
ABF Version 2.0.9
January 2021

Axon Binary File (ABF) Format
Version 2.0.9

User Guide

Axon Binary File (ABF) Format User Guide

2 ABF Version 2.0.9

This document is provided to customers who have purchasedMolecular Devices equipment, software,

reagents, and consumables to use in the operation of suchMolecular Devices equipment, software, reagents,

and consumables. This document is copyright protected and any reproduction of this document, in whole or

any part, is strictly prohibited, except asMolecular Devicesmay authorize in writing.

Software thatmay be described in this document is furnished under a non-transferrable license. It is against

the law to copy,modify, or distribute the software on anymedium,except as specifically allowed in the license

agreement. Furthermore, the license agreementmayprohibit the software from being disassembled, reverse

engineered,or decompiled for any purpose.

Portions of this documentmaymake reference to other manufacturers and/or their products,which may

contain parts whose names are registered as trademarks and/or function as trademarks of their respective

owners.Any such usage is intended only to designate thosemanufacturers’ products as supplied byMolecular

Devices for incorporation into its equipment and does not imply any right and/or license to use or permit others

to use suchmanufacturers’ and/or their product names as trademarks.

Each product is shippedwith documentation stating specifications and other technical information.Molecular

Devices products are warranted tomeet the stated specifications.Molecular Devicesmakes no other

warranties or representations express or implied, including but not limited to, the fitness of this product for any

particular purpose and assumes no responsibility or contingent liability, including indirect or consequential

damages, for any use towhich the purchaser may put the equipment described herein, or for any adverse

circumstances arising therefrom.The sole obligation of Molecular Devices and the customer's sole remedy are

limited to repair or replacement of the product in the event that the product fails to do as warranted.

For research use only. Not for use in diagnostic procedures.

The trademarksmentioned herein are the property of Molecular Devices, LLCor their respective owners. These trademarksmay not be used

in any type of promotion or advertisingwithout the prior written permission of Molecular Devices, LLC.

Patents: http://www.moleculardevices.com/patents

Productmanufactured byMolecular Devices, LLC.

3860 N.First Street, San Jose,California, 95134,United States of America.

Molecular Devices, LLC is ISO9001 registered.

©2021 Molecular Devices, LLC.

All rights reserved.

http://www.moleculardevices.com/patents

ABF Version 2.0.9 3

Contents

Chapter 1: Axon Binary File Format Overview 5

The ABF File Structure 5

History 5

Existing Applications 8

Source Code 12

Obtaining Support 13

Chapter 2: The ABF Header 14

ADC Channel Numbering 15

Indexing Arrays in the ABF Header 15

Unused Fields 16

Version Numbers 16

Chapter 3: The ABF File I/O Functions 18

The ABF File I/O Functions by category 20

Notes About ABF File I/O Functions 20

File Open/Close 21

High Level File Reading 27

Low Level File Read/Write 30

Miscellaneous Functions 48

Use With Care! 61

Appendix A: ABF Hardware and Storage Limits 65

Glossary 67

Axon Binary File (ABF) Format User Guide

4 ABF Version 2.0.9

ABF Version 2.0.9 5

Chapter 1: Axon Binary File Format Overview

The Axon™ Binary File format (ABF) was created for the storage of binary experimental data. It
originated with the pCLAMP suite of data acquisition and analysis programs, but is also
supported by AxoScope software.

These files can be created and read on computers running Microsoft Windows. For optimal
acquisition performance the binary data are written in the byte order convention of the
acquisition computer.

The ABF File Structure

The AXONBINARY FILE has a proprietary format, however the files can be read (and created)
by third-party developers by using the ABFFIO library.

An ABF file is made up of a number of sections as follows:

The header and data sections appear in the order shown. The other sections may appear in
any order since they are pointed to by parameters in the header. All sections are buffered in
blocks of 512 bytes each. The starting location of a section is given as a block number. Block
number 0 represents the start of the file. If the block-number pointer to a section (other than
the header) is zero, the corresponding section is not written.

ABF version 2 (released with pCLAMP 10 in 2006) is a major upgrade from previous versions of
ABF. The major change is that the file header is now of variable length. The impact of this is
that it is no longer possible to read the Data (or other sections) directly from the file; this must
be done using the ABFFIO.DLL library.

The ABF Header Section
The ABF Scope Config Section
The ABF Data Section
The ABF Synch Section
The ABF Tag Section
The ABF Deltas Section
The DAC Data Section

History

Prior to pCLAMP software Version 6.0, two types of files were generated : CLAMPEX files for
stimulated episodic acquisition and FETCHEX files for gap-free and event detected files.
AxoTape for DOS Version 1.x also generated FETCHEX type binary data files. pCLAMP
software Version 6.0 merged these two file formats into the ABF file format, which was
subsequently adopted by AxoTape for DOS Version 2.0, and AxoScope software for Windows
Version 1.0.

For a detailed description of old FETCHEX and CLAMPEX files refer to the manual for pCLAMP
software Version 5.x or earlier.

1

Axon Binary File (ABF) Format User Guide

6 ABF Version 2.0.9

Molecular Devices released pCLAMP software Version 10 in 2006, which also included ABF
Format Version 2.0, a major upgrade.

Status

Axon File Support Pack Version 2.0 is the current version for Microsoft Windows. Third parties
using these modules should understand that there might be minor changes to the functional
interface in future releases. Molecular Devices attempst to document interface changes in the
change history, but does not accept any liability for inconvenience caused by changes that are
made, whether documented fully or not.

ChangeHistory

Version 2.0.9

Added support for up to 50 waveform epochs.
Added support for pre-programmable digital or analog output in gap-free mode.
Increased ABF_STATS_REGIONS from 20 to 24

Version 2.0.6

Added support for the 1.081 second HumSilencer inter-sweep learning period in episodic
stimulation mode.

Version 2.0.5

Added support for the Digidata 1550A digitizer featuring HumSilencer™ adaptive noise
cancellation on Analog In Channel #0.
Added HumSilencer option to ABFScopeConfig.

Version 2.0.4

Added support for a configurable timeout interval when using an external trigger.

Version 2.0.3

Added support for the Digidata 1550 digitizer featuring: 8 analog inputs, 8 analog outputs,
8 digital outputs.

Version 2.0.1

Added support for file compression.
Added constants to identify digitized types.

Version 2.0

Major internal changes
Added support for 4 waveform output channels.
Added support for “fast” and “slow” sample rates per epoch in episodic stimulation mode.

Version 1.80

Added statistics mode for each region: mode is cursor region, epoch etc.

Version 1.79

Removed data reduction (now MiniDigi only)

Version 1.78

Added separate entries for alternating DAC and digital outputs

Version 1.77

Added major, minor and bugfix version numbers

Version 1.76

Added digital trigger out flag.

Chapter 1: Axon Binary File Format Overview

ABF Version 2.0.9 7

Version 1.75

Added polarity for each channel.

Version 1.74

Added channel_count_acquired.

Version 1.73

Added post-processing lowpass filter settings. When filtering is done in pCLAMP software
it is stored in the header.

Version 1.72

Added alternating outputs.

Version 1.71

Added epoch resistance.

Version 1.70

Added data reduction.

Version 1.69

Added user entered percentile levels for rise and decay stats.

Version 1.68

Expanded ABFScopeConfig.

Version 1.67

Train epochs, multiple channel and multiple region stats

Version 1.65

Telegraph support added.

Version 1.6

Expanded header to 5120 bytes and added extra parameters to support 2 waveform
channels.

Version 1.5

Changed ABFSignal parameters from UUTop & UUBottom to fDisplayGain &
fDisplayOffset.
Added and changed parameters in the ‘File Structure’, ‘Display Parameters’, ‘DAC Output
File’, ‘Autopeak Measurements’ and ‘Unused space and end of header’ sections of the
ABF file header.
Expanded the ABF API and error return codes.

Version 1.4

Removed support for big-endian machines.

Version 1.3

Added support for Bells during before or after acquisitions.
Added the parameters to describe hysteresis during event detected acquisitions:
nLevelHysteresis and lTimeHysteresis.
Added support for automatic byte reversal.
Dropped support for BASIC and Pascal.
Added the ABF Scope Config section to store scope configuration information.

Axon Binary File (ABF) Format User Guide

8 ABF Version 2.0.9

Version 1.2

Added nDataFormat so that data can optionally be stored in floating point format.
Added lClockChange to control the multiplexed ADC sample number after which the
second sampling interval commences.

Version 1.1 was released in April 1992.

Existing Applications

Third party

Support for Axon's Binary File (ABF) format has been incorporated into the following categories
of third-party (non-Axon) products.

(i) Special purpose analysis programs written in laboratories by individual researchers.

(ii) Special purpose commercial analysis programs.

(iii) General purpose commercial graphics and scientific analysis programs.

(iv) Public domain acquisition programs that run on Axon Instruments digitizers.

(v) Special purpose commercial acquisition programs.

(vi) Special purpose commercial data conversion programs.

(viii) Special purpose acquisition programs written in laboratories by individual researchers.

Axon Instruments / Molecular Devices

Raw data acquired by Axon's data acquisition programs are stored in ABF format. Current
programs are AxoScope software and Clampex software. Older programs are AxoScope
software, AxoTape and the two pCLAMP acquisition programs (Clampex software, Fetchex). All
of the pCLAMP programs read ABF data.

A floating point version of the ABF format is used for intermediate storage of analyzed data by
Axon Instrument's pCLAMP software (part of the pCLAMP suite) and data exported by Clampex
software (version 7 and later).

For data exchange to other programs, current pCLAMP software (AxoScope software ,
Clampex software , pCLAMP software) creates ATF files, as did the discontinued Axon
electrophysiology software (Fetchan, pSTAT, AxoTape, AxoData) and Axon imaging software
(Axon Imaging Workbench, AxoVideo). Axon's discontinued Fetchan event-detection software
(part of the pCLAMP software DOS suite) also stored the idealized record of data transitions in
EVL format files.

Advantages of using the ABF Function API

One of the goals of the ABF reading routines is to isolate the applications programmer from the
need to know anything other than the most basic information about the file format. If when
working with the ABF reading routines you find that you are overwhelmed by details, stop --
this is a sign that you are not using the proper functions.

In ABF versions 1.x, it was possible to interact with an ABF data file directly, using the
information in the header as a ”road map” of the ABF file layout and characteristics, however
this was discouraged and Axon built a great deal of useful functionality into its ABF functional
interface (the ABF Function API), some of which is documented below.

ABF 2.0 takes this a step further – the format of the information written to the file now uses a
header of variable length. This means that it is now essential to use the ABFFIO.DLL library to
access the data. The ABF Function API described below allows all the information contained in
the file to be readily accessed and insulates the programmer from future changes.

Chapter 1: Axon Binary File Format Overview

ABF Version 2.0.9 9

Episodic Timebase Information

The calculation of time-axis values from the header parameters can be complicated due to the
possibility of a transition within the sweep from one sampling rate to another faster or slower
rate. The ABF routines provide a function (ABF_GetTimebase) that returns the complete
timebase in time units from the data file. The ABF_GetTimeBase function can be used for any
type of data format: episodic, gap-free , variable-length, etc. All types of data are treated as
the same with the ABF routines; therefore it is much clearer and consistent to use the ABF_
GetTimeBase in conjunction with the ABF_GetStartTime function to determine the time in
which a sample was acquired.

Retrieving Stimulus Waveform Descriptions

Retrieving the stimulus waveform can be difficult if only the ABF routines are used. This is
because the waveform may be described either by the Epoch definitions in the header, or by
a "DACFile" block at the end of the file. The ABF_ReadWaveform, however, handles either of
these cases transparently, and will form the stimulus waveform array as an array of samples
corresponding to the time base.

Retrieving Math Signal Data

The Math Signal is an algebraic combination of two ADC channels, described by parameters in
the Math Signal section of the ABF header. Math signal data may be retrieved through the
ABFH_ReadChannel function, using a channel number of -1. (This channel is only available if the
Math channel is enabled, with the nArithmeticEnable flag set in the file header).

What Kind Of Data Are Stored In ABF Files?

Axon Instruments data acquisition programs acquire five types of data, all of which are stored
in ABF format files.

(1) Gap Free. (nOperationMode = 3)

Gap-free ABF files contain a single sweep of up to 4 GB of multiplexed data. A uniform
sampling interval is used throughout. There is no stimulus waveform associated with gap-free
data. Gap-free mode is usually used for the continuous acquisition of data in which there is a
fairly uniform activity over time.

(2) Variable-Length Event-Driven. (nOperationMode = 1)

(3) Fixed-Length Event-Driven. (nOperationMode = 2)

In these two event-driven data acquisition modes, data acquisition is initiated in segments
whenever a threshold-crossing event is detected. There is no stimulus waveform associated
with these two operation modes.

Axon Binary File (ABF) Format User Guide

10 ABF Version 2.0.9

Figure 1-1: Graphical comparison of gap-free acquisition with the event drivenmodes of
acquisition.

In variable-length event-driven acquisition, pre-trigger and trailing portions below threshold are
also acquired. The length of the segment of data is determined by the nature of the data,
being automatically extended according to the amount of time that the data exceeds the
threshold. If the pre-trigger portion of the next event would overlap the trailing portion of the
current event, the current segment is extended. There is no storage of overlapping data. The
precise start time and length of each segment is stored in the Synch Array.

Variable-length event-driven acquisition is usually used for the continuous recording of
"bursting" data in which there are bursts of activity separated by long quiescent periods.

In fixed-length event-driven acquisition, a pre-trigger portion below threshold is acquired.
Unlike variable-length event-driven acquisition, the length of each segment of data is a
pre-specified constant for all segments. For this reason, the segments are often referred to as
sweeps. In this mode, every threshold crossing triggers a sweep; therefore fixed-length
event-driven mode is also sometimes referred to as loss-free oscilloscope mode. If a second
event occurs before the current sweep is finished, a second sweep is acquired triggered from
the second event. This occurrence is referred to as overlap. In this case, consecutive sweeps
in the data file contain redundant data.

The precise start time and length of each sweep is stored in the Synch Array. Although the
length of each sweep is redundant in this mode, it is stored in order to simplify reading and
writing of the Synch Array.

Similarly, the storage of redundant data during overlap is not strictly necessary, but it simplifies
analysis and display for each sweep to be returned as a fixed-length sweep with a known and
constant trigger time. Since no triggers are lost, fixed-length event-driven acquisition is ideal
for the statistical analysis of constant-width events such as action potentials.

Chapter 1: Axon Binary File Format Overview

ABF Version 2.0.9 11

(4) High-Speed OscilloscopeMode. (nOperationMode = 4)

Like fixed-length event-driven acquisition, in high-speed oscilloscope mode a pre-trigger
portion below threshold is acquired. Unlike fixed-length event-driven acquisition, in high-
speed oscilloscope mode not every threshold crossing triggers a sweep. The emphasis is on
allowing the digitizer to be used at the highest possible sampling rate. Like a real high-speed
oscilloscope, there is a "dead time" at the end each sweep during which the display is
updated and the trigger circuit is re-armed. Threshold crossings that arrive during this dead
time are simply ignored. Similarly, second and subsequent threshold crossings during a sweep
do not start a new sweep. Thus there is no storage of overlapping (redundant) data.

Although the acquisition conditions are different for fixed-length event-driven and high-speed
oscilloscope modes, in practice the data file formats are identical and analysis programs can
treat them identically. The only caution is that because of the storage of overlapping data that
is possible in fixed-length event-driven acquisition, the start time of a sweep might occur
before the end of the previous sweep.

(5) Episodic Stimulation Mode. (nOperationMode = 5)

In this mode, a number of equal-length sweeps (also known as episodes) are acquired. A set of
parametrically related sweeps is called a run. Runs can be repeated a specified number of
times to form a trial. If runs are repeated, the corresponding sweeps in each run are
automatically averaged and the trial contains only the average. The trial is stored in a file. Only
one trial can be stored in an ABF file.

Within each sweep a complex stimulus waveform consisting of up to ten epochs can be
generated. One output sample is generated for each A/D conversion. This also applies to the
multiplexed A/D conversions. For example, if there are three multiplexed A/D channels and the
sweeps contain 500 samples for each channel, the D/A converter generates 1500 samples.
Thus there is a stimulus waveform sample corresponding to every sample in the de-
multiplexed A/D waveform.

The amplitudes and durations of the steps, ramps and digital (i.e. TTL) pulses comprising the
epochs can be automatically incremented from sweep to sweep (see the EpochWaveform
and Pulses section of the ABF header). Alternatively, instead of creating epoch-based
waveforms, the user can choose to read the stimulus waveform from a file. Whichever method
is used, a full array containing the stimulus waveform is provided by the ABF routines when the
applications programmer requests the stimulus waveform array associated with any sweep.

During epochs, the sampling interval can be set to “Fast” or “Slow”. The Fast rate
(fADCSequenceInterval) is the actual sampling rate of the digitizer, whereas the “Slow” rate
uses decimation (uFileCompressionRatio) to reduce the number of samples saved in the file. If
the applications programmer requests the X (i.e. time) array for the sweep, the ABF reading
routines provide an array that contains the properly spaced time intervals taking into account
the Fast and Slow sampling intervals. In ABF version 2.0, irrespective of whether the acquisition
program specifies the sampling interval on a per-channel or a multiplexed basis, the value
stored in the ABF file is the per-channel value. In the three channel example used previously, if
each channel were sampled at 21 µs, the value stored in the file is 21 µs, even though the
multiplexed sampling interval used by the digitizer is 7 µs. This is different from earlier versions
(1.x) of ABF.

Axon Binary File (ABF) Format User Guide

12 ABF Version 2.0.9

ABF episodic stimulation data files may also contain a special pseudo channel known as the
Math Signal. This channel is the result of an arithmetic manipulation of two acquired data
channels. In actual fact, the math signal data are not stored in the file. Instead, the formula and
the acquired data channels are stored. However, as a practical matter the applications
programmer need not know that the math signal data are not stored, since if the math signal is
requested, the ABF routines calculate the result and return the math signal array. On the other
hand, for more flexible analysis purposes, the applications programmer can take advantage of
the fact that the math signal is created on the fly during reading by altering the parameters of
the formula before requesting the math signal array.

A correction technique called P/N leak subtraction can be applied to one selected ADC
channel during acquisition. This sophisticated technique is specific to intracellular voltage-
clamp measurements. Using this technique, passive cell membrane responses are removed
from the signal on the selected ADC channel before storage. Although P/N leak subtraction is
an important acquisition technique, it does not directly affect data analysis, because from the
data handling and storage perspective, the P/N leak subtracted ADC channel is not different
than the other ADC channels.

In Clampex software , both the raw and the corrected (P/N leak subtracted) data are stored; this
allows later analysis on either the raw or corrected data.

Another acquisition technique that does not directly affect data analysis is the application of
pre-sweep trains. These are trains of pulses that are applied to condition the cell membrane
before the sweep commences. No data are stored during the pre-sweep trains.

Many of the parameters of an acquisition can be arbitrarily specified for each sweep by a
comma-separated list of variables. These are stored in the Variable Parameter User List.
There is one user list for each output channel. A user list (sParamValueList) can only be applied
to a single selected parameter (nParamToVary). Analysis programs should consider reading
and parsing the user list since it is sometimes useful to plot extracted results in an X-Y plot with
the user list values determining the X axis. When a user list is enabled (nListEnable) it overrides
the usual specification for the selected parameter.

Source Code

The files included in this package provide Microsoft Windows libraries for accessing data files
stored in the Molecular Devices ABF file format.

The source code is no longer included in the File Support Pack. The Windows dynamic linked
library ABFFIO.DLL along with the included ‘C’ header files must be used to access the data.

The File Support Pack consists of a .ZIP file (ABF_FileSupportPack.zip). RunWinZIP to unzip the
files.

The ABFFIO folder contains the DLL and the required ‘C’ header files.

COPYRIGHT

These libraries are copyrighted by Molecular Devices, LLC.

Molecular Devices permits the use of these libraries for the addition of file I/O support to third-
party programs. Modified libraries retain their original copyright.

FUTURE COMPATIBILITY

From time to time the various Axon file formats will be enhanced. It is the intention of Molecular
Devices to update the Axon File Support Pack soon after new file formats are released.

Chapter 1: Axon Binary File Format Overview

ABF Version 2.0.9 13

Obtaining Support

Molecular Devices is a leading worldwide manufacturer and distributor of analytical
instrumentation, software, and reagents. We are committed to the quality of our products and
to fully supporting our customers with the highest level of technical service.

Our Support website, www.moleculardevices.com/service-support, has a link to the
Knowledge Base, which contains technical notes, software upgrades, safety data sheets, and
other resources. If you still need assistance after consulting the Knowledge Base, you can
submit a request to Molecular Devices Technical Support.

Please have your instrument serial number orWork Order number and your software version
number available when you call.

http://www.moleculardevices.com/service-support

ABF Version 2.0.9 14

Chapter 2: The ABF Header

The ABF header is the first block of data at the start of an ABF data file. The header contains
parameters that describe the stimulation, the acquisition and the hierarchy of the data. It
describes the contents of the data file and contains entries to describe the settings in effect
when the data file was acquired.

In version 2.0, the header is of variable length. This depends on the protocol features in use
(e.g. number of channels, number of epochs in the command waveform). Third party programs
should NOT rely on the size of the header, or retrieve information directly from the file based
on a byte offset. The ABFFileHeader is now different to the data written to the file - only use
the documented variables defined in the file ABFFIleHeadr.h.

See the file ABFHEADR.H for a “C” definition of the ABFFileHeader structure.

ABFFileHeader sub-sections

File ID and Size Information

File Structure

Trial Hierarchy Information Application Version Information

Display Parameters LTP Protocol

Hardware Information Output Triggers

Environmental Information Post-processing Actions

Multi-channel information

Synchronous Timer Outputs

Epoch Waveform and Pulses

Stimulus Output File

Pre-sweep Trains

Variable Paramewter User List

Statistics Measurements

Channel Arithmetic

Leak Subtraction

Miscellaneous Parameters

2

Axon Binary File (ABF) Format User Guide

15 ABF Version 2.0.9

ADC Channel Numbering

The Axon data acquisition programs distinguish between physical and logical channel
numbers. Physical channel numbers are the channel numbers used internally to communicate
with the acquisition hardware. Logical channel numbers are the external connector labels on
the front panel of the acquisition hardware. Logical channel numbers are used only for
presentation to the user. Physical channel numbers are used everywhere else. For example,
parameters are stored using physical channel number order (0 to 15) for such structures as the
sampling sequence array and the entries for the external lowpass and highpass filters. Similarly,
a physical channel number is used for the Trigger channel. Currently, the only digitizer known
to have different physical and logical channel numbering is the obsolete TL-2 interface.

Indexing Arrays in the ABF Header

To get a Logical channel number from a Physical channel number, simply index the
nADCPtoLchannelMap array by the Channel number you wish to convert. Thus
nADCPtoLchannelMap[1] provides the Logical Channel Number for Physical Channel Number 1.
This array is always symmetrical, so it can be used in the same way to convert back to Physical
Channel Numbers from Logical Channel Numbers.

The first thing to look at is the nADCSamplingSeq array. This tells you which physical ADC
channels were acquired and in what order. The first entry in this array is the Physical channel
number of the first ADC channel acquired, followed by the second etc. There are
nADCNumChannels channels in this array. All ADC arrays except for the nADCSamplingSeq are
indexed through Physical channel numbers. These include: sADCChannelName, sADCUnits,
etc.

Note: NOTE: All array indexing within the header and within the ABF routines start at 0,
except Sweep number, which starts at 1.

void ShowFirstAcquiredChannelInfo(int nFile, ABFFileHeader *pFH)

{

// Get first physical channel number and name

int nFirstPhysicalChannel = pFH->nADCSamplingSeq[0];

char *psSignalName = pFH->sADCChannelName[nFirstPhysicalChannel];

// Get channel number to show to user

int nFirstLogicalChannel = pFH->nADCPtoLchannelMap
[nFirstPhysicalChannel];

fprint(“The first acquired channel (%s) comes from ADC channel %d\n”,

psSignalName, nFirstLogicalChannel);

// Get start time of first episode of first channel

int nFirstEpisode = 1;

float fStartTime;

ABF_GetStartTime(nFile, pFH, nFirstPhysicalChannel, nFirstEpisode,

&fStartTime, NULL);

}

Chapter 2: The ABF Header

ABF Version 2.0.9 16

Unused Fields

Unused integer and floating point parameter fields should be filled with zeros. Unused strings
should be filled with the space character (ASCII #32).

Parameters for unsampled ADC channels should be filled with the indicated default.

Version Numbers

The file version number consists of a major and a minor number. For example, the "1" in Version
1.0 is the major number, and the "0" is the minor number.

In general, the major version number is updated when there are many changes that can affect
the byte offset of the existing parameters. The minor version number is updated when unused
parameter space in the ABF structure is used. In most cases, existing programs will not be
affected since they should not be dependent upon the unused parameters.

Axon Binary File (ABF) Format User Guide

17 ABF Version 2.0.9

ABF Version 2.0.9 18

Chapter 3: The ABF File I/O Functions

The ABF file routines are a set of functions for creating and/or accessing ABF data files. Some
functions are low level functions that will only be required by users acquiring ABF data files.
Other functions provide higher level access to ABF data, returning fully scaled data values in
the units of the acquired data.

Note: In version 2.0 of ABF, there is no longer a direct correspondence between the
ABF File Header and the binary image of the file. Therefore it is essential that the ABF
header structure is accessed through the published header files, NOT by byte offsets
within the binary image of the file.

In addition the ABFH_xxx functions should be used to extract data from the header where
available.

Routine Use

ABF_BuildErrorText on page 49 Build an error string from an error number and a file

name.

ABF_Close on page 26 Closes an ABF file that was previously opened with

either ABF_ReadOpen or ABF_WriteOpen.

ABF_EpisodeFromSynchCount on page 51 Find the sweep that contains a particular synch

count.

ABF_FormatDelta on page 43 Builds an ASCII string to describe a delta.

ABF_FormatTag on page 52 This function reads a tag from the TagArray section

and formats it as ASCII text.

ABF_GetEpisodeDuration on page 52 Get the duration of a given sweep in ms.

ABF_GetEpisodeFileOffset on page 53 Returns the sample point offset in the ABF file for the

start of the given sweep number that is passed as an

argument.

ABF_GetFileHandle on page 61 Returns the DOS file handle associated with the

specified file.

ABF_GetMissingSynchCount on page 53 Get the count of synch counts missing before the

start of this sweep and the end of the previous

sweep.

ABF_GetNumSamples on page 55 Get the number of samples in this sweep.

ABF_GetStartTime on page 56 Gets the start time in ms for the specified sweep.

ABF_GetSynchArray on page 61 Returns a pointer to the CSynch object used to buffer

the Synch array to disk.

ABF_GetWaveform on page 28 Gets the Waveform that was put out for a particular

sweep on a particular ADC channel in User Units.

ABF_GetVoiceTag on page 38 Retrieves a voice tag from the ABF file.

3

Axon Binary File (ABF) Format User Guide

19 ABF Version 2.0.9

Routine Use

ABF_HasData on page 57 Checks whether an open ABF file has any data in it.

WINAPI ABF_HasOverlappedData on page 57 Determines if there is any overlapped data in the file.

ABF_IsABFFile on page 58 Checks the data format of a given file.

ABF_MultiplexRead on page 31 Reads a sweep of multiplexed multi-channel ADC

samples from the ABF file.

ABF_MultiplexWrite on page 33 Writes a sweep of multiplexed multi-channel ADC

samples to the ABF file.

ABF_PlayVoiceTag on page 40 Retrieves a voice tag, builds a WAV file, plays the

WAV file and cleans up.

ABF_ReadChannel on page 27 Reads a sweep/chunk of data from a particular ADC

channel, returning the data as fully scaled User Units.

ABF_ReadDACFileEpi on page 34 Reads a sweep of multiplexed multi-channel DAC

samples from the DACFile section of the ABF file.

(Only valid if a DAC file was used for waveform

generation.)

ABF_ReadTags on page 36 Reads a segment of the array from the TagArray

section of the ABF file.

ABF_ReadOpen on page 21 Opens an ABF file for reading.

ABF_ReadRawChannel on page 35 Reads a complete multiplexed sweep from the data

file and then decimates it, returning single de-

multiplexed channel in the raw data format.

ABF_ReadScopeConfig on page 45 Retrieves the scope configuration info from the data

file.

ABF_ReadTags on page 36 Reads a segment of the tag array from the TAGArray

section.

ABF_SaveVoiceTag on page 39 Saves a voice tag to the ABF file.

ABF_SetErrorCallback on page 59 This routine sets a callback function to be called in

the event of an error occurring.

ABF_SynchCountFromEpisode on page 59 Find the synch count at which a particular sweep

started.

ABF_UpdateHeader on page 24 Updates the file header and writes the synch array

out to disk if required.

ABF_UpdateAfterAcquisition on page 63 Update the ABF internal housekeeping after data has

been written into a data file without using the ABF

file I/O routines.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 20

Routine Use

ABF_WriteDACFileEpi on page 47 Writes a sweep of multiplexed multi-channel DAC

samples to the DACFile section of the ABF file. This

function should only be used after all acquired data

has been written to the file.

ABF_WriteDelta on page 43 Writes the details of a delta to a temporary file. The

deltas are written to the ABF file by ABF_Update.

ABF_WriteOpen on page 23 Opens an ABF file for writing.

ABF_WriteRawData on page 48 Writes a raw data buffer to the ABF file at the current

file position.

ABF_WriteScopeConfig on page 45 Saves the current scope configuration info to the

data file.

ABF_WriteStatisticsConfig on page 46 Saves the current statistics window configuration info

to the data file.

ABF_WriteTag on page 37 Writes a tag value to the TAGArray section.

Notes:

Error Return Values on page 21

The ABF File I/O Functions by category

Notes About ABF File I/O Functions on page 20
File Open/Close on page 21
High Level File Reading on page 27
Low Level File Read/Write on page 30
Miscellaneous Functions on page 48

Notes About ABF File I/O Functions

Altering Existing Raw Data Files on page 20
Compilers on page 20
Error Return Values on page 21

Altering Existing Raw Data Files

Molecular Devices does not easily allow users to change or append data to ABF raw data files,
in the belief that raw data is sacrosanct and will often need to be analyzed many times in the
future. We recommend that third-party developers do not allow users to easily delete or
modify ABF files.

Compilers
The ABF File Support Libraries routines are written in C++. For pCLAMP 10, it is built using the
Microsoft Visual C++ version 7.0 compiler (Visual Studio .NET 2003).

Axon Binary File (ABF) Format User Guide

21 ABF Version 2.0.9

Error Return Values

The return type for all ABF API functions is “BOOL”. The interpretation of this value is that TRUE
= Success, and FALSE = Failure of the function. Should a function call fail, an error number
indicating the reason for failure is returned in the pnError parameter. If the reason for the error is
not required, NULL may be passed for the pnError parameter.

File Open/Close

The ABF API functions provides two functions for opening files, one for opening files for
reading, the other for opening files for writing. Files opened for writing may not be read from,
and files opened for reading may no be written to. The ABF_Close function must always be
called to close a file successfully opened with either ABF_ReadOpen or ABF_WriteOpen.

Routine Use

ABF_ReadOpen on page 21 Opens an ABF file for reading.

ABF_WriteOpen on page 23 Opens an ABF file for writing.

ABF_UpdateHeader on page 24 Updates the file header and writes the synch array out

to disk if required.This routine should always be called

before closing a file opened with ABF_WriteOpen.

ABF_Close on page 26 Closes an ABF file that was previously opened with

either ABF_ReadOpen or ABF_WriteOpen.

ABF_ReadOpen

#include "abffiles.h"

BOOL ABF_ReadOpen(char*szFileName, int *phFile, UINTuFlags,

ABFFileHeader *pFH, UINT *puMaxSamples,
DWORD *pdwMaxEpi, int *pnError);

Opens an existing ABF data file for reading. Reads the acquisition parameters from the file
header into the passed ABFFileHeader structure.

Parameter Description

szFileName Name of data file to open.

phFile Pointer to ABF file handle of this file.

uFlags Flag to indicate whether file is parameter file or not.

pFH Pointer to acquisition parameters read from data file.

puMaxSamples Pointer to requested size of data blocks to be returned.

pdwMaxEpi Pointer to number of sweeps that exist in the data file.

pnError Address of error return code. May be NULL.

Legal values for uFlags

ABF_DATAFILE File is data file.

ABF_PARAMFILE File is parameter file.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 22

Legal values for uFlags

ABF_ALLOWOVERLAP Permit return of overlapping data.

Comments

The ABF_ReadOpen function opens the data file szFileName, allocates an ABF file handle for it
and assigns this number to *phFile. Data is read from the file header into *pFH. If ABF_
PARAMFILE is set in uFlags then no further processing is performed, otherwise internal buffers
are allocated in preparation for file reading.

For ABF_GAPFREEFILE and ABF_VARLENEVENTS files, *puMaxSamples is passed in as a
requested maximum size of the blocks of data returned by the ABF_ReadMultiplex and ABF_
ReadChannel routines. For all modes, the actual value that will be used is returned in this
location.

For Event Detected modes, on calling ABF_ReadOpen, the parameter pdwMaxEpi points to
the maximum number of sweeps to read from the file. If it is zero the maximum will be 8192
sweeps, depending on RAM availability. The total number of data blocks of the size returned
in *puMaxSamples is returned in *pdwMaxEpi.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_TOOMANYFILESOPEN Too many files are already open.

ABF_EOPENFILE Failed DOS open file.

ABF_EUNKNOWNFILETYPE Could not recognise file type, possibly not an ABF file.

ABF_EBADPARAMETERS Could not read parameter header, possibly corrupted header.

ABF_EEPISODESIZE *pdwMaxSamples out of range i.e. below 128.

ABF_OUTOFMEMORY Could not allocate internal buffer.

Example

#include "abffiles.h"

BOOL FindAnEpisode(char *pszFileName, DWORD *pdwSample, DWORD *pdwEpisode)

{

int hFile;

int nError = 0;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE, &FH, &uMaxSamples,
&dwMaxEpi, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_EpisodeFromSynchCount(hFile, &FH, pdwSynchCount, pdwEpisode,
&nError))

Axon Binary File (ABF) Format User Guide

23 ABF Version 2.0.9

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF_WriteOpen

#include "abffiles.h"

BOOL ABF_WriteOpen(char *szFileName, int *phFile, UINT uFlags,

ABFFileHeader *pFH, int *pnError);

Opens an existing data fileFile for writing. Writes the acquisition parameters.

Parameter Description

szFileName Name of data file to open.

phFile Pointer to ABF file handle of this file.

uFlags Flag to indicate whether file is parameter file or not.

pFH Pointer to acquisition parameters to be written to data file.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteOpen function opens the data file szFileName, allocates an ABF file handle for
it and assigns this number to *phFile. The contents of *pFH are written to the file header.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_TOOMANYFILESOPEN Too many data files are already open.

ABF_EOPENFILE Failed DOS open file.

ABF_EWRITEPARAMETERS Could not write parameter header.

ABF_OUTOFMEMORY Could not allocate decollation buffer.

ABF_EDISKFULL Not enough space on disk.

Example

#include "abffiles.h"

BOOL Acquisition(char *pszFileName, ABFFileHeader *pFH)

{

int hFile;

HANDLE hHandle;

int nError = 0;

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 24

DWORD dwEpisodes, dwSamples;

if (!ABF_WriteOpen(pszFileName, &hFile, ABF_DATAFILE, pFH, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_GetFileHandle(hFile, &hHandle, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

AcquireAndWriteData(hHandle, pFH, &dwEpisodes, &dwSamples);

if (!ABF_UpdateAfterAcquisition(hFile, pFH, dwEpisodes, dwSamples, &nError
))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_UpdateHeader(hFile, pFH, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF_UpdateHeader

#include "abffiles.h"

BOOL ABF_UpdateHeader(int hFile, ABFFileHeader *pFH, int *pnError);

Updates the file header to reflect the data newly written into an ABF data file.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

pnError Address of error return code. May be NULL.

Comments

The ABF_UpdateHeader function updates the file header and writes the synch array out to
disk if required. This function should always be called before closing a file opened with ABF_
WriteOpen.

Axon Binary File (ABF) Format User Guide

25 ABF Version 2.0.9

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EWRITEPARAMETERS Could not write header parameters.

Example

#include "abffiles.h"

BOOL Acquisition(char *pszFileName, ABFFileHeader *pFH)

{

int hFile;

HANDLE hHandle;

int nError = 0;

DWORD dwEpisodes, dwSamples;

if (!ABF_WriteOpen(pszFileName, &hFile, ABF_DATAFILE, pFH, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_GetFileHandle(hFile, &hHandle, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

AcquireAndWriteData(hHandle, pFH, &dwEpisodes, &dwSamples);

if (!ABF_UpdateAfterAcquisition(hFile, pFH, dwEpisodes, dwSamples, &nError
))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_UpdateHeader(hFile, pFH, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 26

ABF_Close

#include "abffiles.h"

BOOL ABF_Close(int hFile, int *pnError);

Closes the specified data file.

Parameter Description

hFile ABF file handle.

pnError Address of error return code. May be NULL.

Comments

The ABF_Close function closes the data file specified in hFile.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADFILEINDEX Invalid ABF file handle specified.

ABF_EBADFILE Could not close file.

Example

#include "abffiles.h"

int ReadChannelEpisode(char *pszFileName, int nChannel,

DWORD dwEpisode, float *pfBuffer,

UINT *puNumSamples)

{

int hFile;

int nError;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE, &FH,

&uMaxSamples, &dwMaxEpi, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_ReadChannel(hFile, &FH, nChannel, dwEpisode, pfBuffer,

puNumSamples, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

Axon Binary File (ABF) Format User Guide

27 ABF Version 2.0.9

High Level File Reading

The high level file reading routines return data from the ABF file in fully scaled 4-byte floats, in
the units specified by the user (User Units on page 69) at the preparation.

Routine Use

ABF_ReadChannel on

page 27

Reads a sweep/chunk of data from a particular ADC channel, returning the

data as fully scaled UserUnits.

ABF_GetWaveform on

page 28

Gets the Waveform that was put out for a particular sweep on a particular

DAC channel in UserUnits.

ABF_ReadChannel

#include "abffiles.h"

BOOL ABF_ReadChannel(int hFile, ABFFileHeader *pFH,

int nChannel, DWORD dwEpisode, float *pfBuffer,
UINT *puNumSamples, int *pnError);

Reads a sweep of data for a particular channel from a previously opened data file.

Parameter Description

hFile ABF file handle.

pFH File header for the file being read.

nChannel Physical channel number to be read.

dwEpisode Sweep number to be read.

pfBuffer Data buffer for the data.

puNumSamples Number of valid points in the data buffer.

pnError Address of error return code. May be NULL.

Comments

The ABF_ReadChannel function reads sweep number dwEpisode of channel nChannel from
hFile into pfBuffer. The actual number of points read into the buffer is returned in
*puNumSamples. If the data in the file is in two-byte binary format, it is converted into fully
scaled 4-byte floats in User Units on page 69.

It is up to the user of this routine to ensure that the buffer passed in as pfBuffer points to an
array of sufficient size to contain the returned sweep.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADFILEINDEX Invalid ABF file handle specified.

ABF_EWRITEONLYFILE This file is write-only.

ABF_EINVALIDCHANNEL Channel number is invalid.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 28

Example

#include "abffiles.h"

int ReadChannelEpisode(char *pszFileName, int nChannel,

DWORD dwEpisode, float *pfBuffer,

UINT *puNumSamples)

{

int hFile;

int nError;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE, &FH, &uMaxSamples,
&dwMaxEpi, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_ReadChannel(hFile, &FH, nChannel, dwEpisode, pfBuffer,

puNumSamples, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF_GetWaveform

#include "abffiles.h"

BOOL ABF_GetWaveform(int nFile, ABFFileHeader *pFH, int nChannel,

DWORD dwEpisode, float *pfBuffer, int *pnError);

Gets the DAC output waveform for the specified sweep.

Parameter Description

hFile ABF file handle.

pFH File header for the file as returned by ABF_ReadOpen.

nChannel DAC channel of interest.

dwEpisode Sweep number to return the start time for.

pfBuffer Address of buffer to fill with DAC output waveform.

pnError Address of error return code. May be NULL.

Axon Binary File (ABF) Format User Guide

29 ABF Version 2.0.9

Comments

The ABF_GetWaveform function returns the DAC output waveform for a particular sweep, in
DAC User Units.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL ShowWaveforms(char *pszFileName, int nFile,

ABFFileHeader *pFH, int nChannel)

{

int nError;

DWORD I;

UINT uNumSamples = (UINT)pFH->lNumSamplesPerEpisode /

pFH->nADCNumChannels;

float *pfBuffer = (float *)malloc(uNumSamples *

sizeof(float));

if (!pfBuffer)

{

printf("Out of memory!\n");

return FALSE;

}

for (DWORD i=1; i<=(DWORD)pFH->lActualEpisodes; I++)

{

if (!ABF_GetWaveform(nFile, pFH, nChannel, i, pfBuffer,

&nError))

{

free(pfBuffer);

return ShowABFError(pszFileName, nError);

}

printf("Episode %lu\n", i);

for (UINT j=0; j<uNumSamples; j++)

printf("%g\n", pfBuffer[j]);

}

free(pfBuffer);

return TRUE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 30

Low Level File Read/Write

The low level file I/O routines read and write raw data in two-byte ADC/DAC samples.

Note: Note: To avoid the complexity of doing the ADC to User Units conversion,
Molecular Devices strongly recommends that third-party developers use the high-level
file reading routines instead of the following low-level routines.

If the low-level routines are used, the functions ABFH_GetADCtoUUFactors() and ABFH_
GetDACtoUUFactors() should be used to retrieve the composite scale and offset factors used
to convert ADC/DAC values to UserUnits.

Routine Use

ABF_MultiplexRead on page 31 Reads a sweep of multiplexed multi-channel ADC

samples from the ABF file.

ABF_MultiplexWrite on page 33 Writes a sweep of multiplexed multi-channel ADC

samples to the ABF file.

ABF_ReadDACFileEpi on page 34 Reads a sweep of multiplexed multi-channel DAC

samples from the DACFile section of the ABF file

(only valid if a DAC file was used for waveform

generation).

ABF_ReadRawChannel on page 35 Reads a complete multiplexed sweep from the

data file and then decimates it, returning single de-

multiplexed channel in the raw data format.

ABF_ReadTags on page 36 Reads a segment of the tag array from the

TAGArray section.

ABF_WriteTag on page 37 Writes a tag value to the TAGArray section.

ABF_GetVoiceTag on page 38 Retrieves a voice tag from the ABF file.

ABF_SaveVoiceTag on page 39 Saves a voice tag to the ABF file.

ABF_PlayVoiceTag on page 40 Retrieves a voice tag, builds a WAV file, plays the

WAV file and cleans up.

ABF_ReadDeltas on page 41 Reads a Delta array from the DeltaArray section of

the ABF file.

ABF_WriteDelta on page 43 Writes the details af a delta to a temporary file.

The deltas are written to the ABF file by ABF_

Update.

ABF_FormatDelta on page 43 Builds an ASCII string to describe a delta.

ABF_ReadScopeConfig on page 45 Retrieves the scope configuration info from the

data file.

ABF_WriteScopeConfig on page 45 Saves the current scope configuration info to the

data file.

Axon Binary File (ABF) Format User Guide

31 ABF Version 2.0.9

Routine Use

ABF_WriteStatisticsConfig on page 46 Saves the current statistics window configuration

info to the data file.

ABF_WriteDACFileEpi on page 47 Writes a sweep of multiplexed multi-channel DAC

samples to the DACFile section of the ABF file.

This function should only be used after all acquired

data has been written to the file.

ABF_WriteRawData on page 48 Writes a raw data buffer to the ABF file at the

current file position.

ABF_MultiplexRead

#include "abffiles.h"

BOOL ABF_MultiplexRead(int hFile, ABFFileHeader pFH,

DWORD dwEpisode, void *pvBuffer, UINT *puNumSamples,
int *pnError);

Reads a sweep of data from a previously opened data file. The data is returned with all
channels multiplexed together.

Parameter Description

hFile ABF file handle.

pFH File header for the file being read.

dwEpisode Sweep number to be read.

pvBuffer Data buffer for the data.

puNumSamples Number of valid points returned in the data buffer.

pnError Address of error return code. May be NULL.

Comments

The ABF_MultiplexRead function reads sweep number dwEpisode from hFile into pvBuffer.
The actual number of points read into the buffer is returned in *puNumSamples. Only in the
case of ABF_VARLENEVENTS mode or at the end of an ABF_GAPFREEFILE file will
*puNumSamples differ from the value returned by ABF_ReadOpen in *puMaxSamples.

It is up to the user of this routine to ensure that the buffer passed in as pvBuffer points to an
array of at least pFH->lNumSamplesPerEpisode samples in length, where the file header pFH
was returned by the ABF_ReadOpen command.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EREADDATA Could not read sweep data from file.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 32

Example

#include "abffiles.h"

BOOL CopyDataFile(char *pszFileIn, int nFileIn, ABFFileHeader *pFI,

char *pszFileOut, int nFileOut, ABFFileHeader *pFO)

{

UINT uNumSamples = (UINT)pFI->lNumSamplesPerEpisode;

DWORD dwEpiStart, dwMissingSamples;

short *pnBuffer = (short *)malloc(uNumSamples * sizeof(short));

if (!pnBuffer)

{

printf("Out of memory!\n");

return FALSE;

}

for (DWORD i=1; i<=(DWORD)pFI->lActualEpisodes; i++)

{

UINT uFlag = 0;

int nError = 0;

if (!ABF_MultiplexRead(nFileIn, pFI, i, pnBuffer, &uNumSamples, &nError))

return ShowABFError(pszFileIn, nError);

if (!ABF_SynchCountFromEpisode(nFileIn, pFI, i, &dwEpiStart, &nError))

return ShowABFError(pszFileIn, nError);

if (pFI->nOperationMode == ABF_VARLENEVENTS)

{

if (!ABF_GetMissingSynchCount(nFileIn, pFI, I, &dwMissingSynchCount,
&nError))

return ShowABFError(pszFileIn, nError);

if (dwMissingSynchCount == 0)

uFlag = ABF_APPEND;

}

if (!ABF_MultiplexWrite(nFileOut, pFO, uFlag, pnBuffer, dwEpiStart,
uNumSamples, &nError))

return ShowABFError(pszFileOut, nError);

}

return TRUE;

}

Axon Binary File (ABF) Format User Guide

33 ABF Version 2.0.9

ABF_MultiplexWrite

#include "abffiles.h"

BOOL ABF_MultiplexWrite(int hFile, ABFFileHeader *pFH,

UINT uFlags, void *pvBuffer, DWORD dwEpiStart,
UINT uNumSamples, int *pnError);

Writes a sweep of data into a previously opened data file. The data buffer must contain all
channels multiplexed together.

Parameter Description

hFile ABF file handle.

pFH File header for the file being written.

uFlags Flags governing the write process.

pvBuffer Data buffer for the data.

dwEpiStart Start time in samples of this sweepSweep.

uNumSamples Number of valid points in the data buffer.

pnError Address of error return code. May be NULL.

Comments

The ABF_MultiplexWrite function writes the sweep of data from pvBuffer into hFile. If the ABF_
APPEND flag is set for an ABF_VARLENEVENTS mode file the data is appended to the
previous sweep in the data file being written.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EDISKFULL Not enough space on disk.

Example

#include "abffiles.h"

BOOL CopyDataFile(char *pszFileIn, int nFileIn, ABFFileHeader *pFI,

char *pszFileOut, int nFileOut, ABFFileHeader *pFO)

{

UINT uNumSamples = (UINT)pFI->lNumSamplesPerEpisode;

DWORD dwEpiStart, dwMissingSamples;

short *pnBuffer = (short *)malloc(uNumSamples * sizeof(short));

if (!pnBuffer)

{

printf("Out of memory!\n");

return FALSE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 34

for (DWORD i=1; i<=(DWORD)pFI->lActualEpisodes; i++)

{

UINT uFlag = 0;

int nError = 0;

if (!ABF_MultiplexRead(nFileIn, pFI, i, pnBuffer, &uNumSamples,

&nError))

return ShowABFError(pszFileIn, nError);

if (!ABF_SynchCountFromEpisode(nFileIn, pFI, i, &dwEpiStart,

&nError))

return ShowABFError(pszFileIn, nError);

if (pFI->nOperationMode == ABF_VARLENEVENTS)

{

if (!ABF_GetMissingSynchCount(nFileIn, pFI, I,

&dwMissingSynchCount, &nError))

 return ShowABFError(pszFileIn, nError);

if (dwMissingSynchCount == 0)

 uFlag = ABF_APPEND;

}

if (!ABF_MultiplexWrite(nFileOut, pFO, uFlag, pnBuffer,

dwEpiStart, uNumSamples, &nError))

return ShowABFError(pszFileOut, nError);

}

return TRUE;

}

ABF_ReadDACFileEpi

#include "abffiles.h"

BOOL ABF_ReadDACFileEpi(int hFile, ABFFileHeader *pFH,

short *pnDACArray, DWORD dwEpisode, int *pnError);

Reads a sweep from the DAC file section of an ABF file.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

pnDACArray Data buffer for the data.

dwEpisode Sweep number to be read.

pnError Address of error return code. May be NULL.

Comments

The ABF_ReadDACFileEpi function reads sweep number dwEpisode from the DAC file
section of hFile into pnDACArray..

Axon Binary File (ABF) Format User Guide

35 ABF Version 2.0.9

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADDACEPISODE Could not read data.

Example

#include "abffiles.h"

BOOL ShowDACFileData(char *pszFileName, int nFile, ABFFileHeader *pFH,

short *pnBuffer)

{

int nError;

DWORD i;

UINT j;

UINT uNumSamples = (UINT)pFH->lNumSamplesPerEpisode;

for (i = 0; i < (DWORD)pFH->lDACFileNumEpisodes; i++)

{

if (!ABF_ReadDACFileEpi(nFile, pFH, pnBuffer, i, &nError))

return ShowABFError(pszFileName, nError);

for (j = 0; j < uNumSamples; j++)

printf("%d\n", pnBuffer[j]);

}

return TRUE;

}

ABF_ReadRawChannel

#include "abffiles.h"

BOOL ABF_ReadRawChannel(int nFile, ABFFileHeader *pFH, int nChannel, DWORD
dwEpisode,

void *pvBuffer, UINT *puNumSamples, int *pnError);

Reads a complete multiplexed sweep from the data file and then decimates it, returning single
de-multiplexed channel in the raw data format.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

nChannel Channel to read the data for.

dwEpisode Sweep/chunk number to read.

pvBuffer Buffer to return the raw, de-multiplexed data.

puNumSamples Size of buffer pointed to by pvBuffer.

pnError Address of error return code. May be NULL.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 36

Comments

The required size of the passed buffer is:

pFH->lNumSamplesPerEpisode / pFH->nADCNumChannels (shorts)

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EINVALIDCHANNEL The requested channel was not in the sampling list.

ABF_OUTOFMEMORY Insufficient memory was available for use internally.

ABF_EEPISODERANGE Sweep number out of range.

ABF_EREADDATA Could not read sweepSweep data from file.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

ABF_ReadTags

#include "abffiles.h"

BOOL ABF_ReadTags(int hFile, ABFFileHeader *pFH,

DWORD dwFirstTag, ABFTag *pTagArray, UINT uNumTags,
int *pnError);

Reads a segment of the tag array from the TagArray section of the ABF file.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

dwFirstTag Index of the start of the sub array to retrieve

pTagArray Data buffer for the tag array.

uNumTags Number of tag entries to retrieve.

pnError Address of error return code. May be NULL.

Comments

The ABF_ReadTags function reads a tag array from the TagArray section of the ABF file.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADTAG Could not read data.

Example

#include "abffiles.h"

Axon Binary File (ABF) Format User Guide

37 ABF Version 2.0.9

#define TAG_BLOCKSIZE 10

int PrintTags(int hFile, char *pszFileName, ABFFileHeader *pFH)

{

ABFTag *pTagArray;

UINT i;

int nError;

if (pFH->lNumTagEntries < 1)

return TRUE;

pTagArray = (ABFTag *)calloc(TAG_BLOCKSIZE, sizeof(ABFTag));

DWORD dwTagCount = pFH->lNumTagEntries;

DWORD dwFirstTag = 0;

while (dwTagCount)

{

 UINT uTags = (TAG_BLOCKSIZE > dwTagCount ?

(UINT)dwTagCount : TAG_BLOCKSIZE);

if (!ABF_ReadTags(hFile, pFH, dwFirstTag, pTagArray, uTags,

&nError))

{

free(pTagArray);

return ShowABFError(pszFileName, nError);

}

for (i = 0; i < uTags; i++)

 printf("\nTime: %ld Type: %d\n%56.56s\n",

pTagArray[i].lTagTime, pTagArray[i].nTagType,

pTagArray[i].sComment);

dwTagCount -= uTags;

dwFirstTag += uTags;

}

free(pTagArray);

return TRUE;

}

ABF_WriteTag

#include "abffiles.h"

BOOL ABF_WriteTag(inthFile, ABFFileHeader *pFH, ABFTag *pTag,

int *pnError);

Writes a tag value to the TAGArray section.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 38

Parameter Description

pTag Data buffer of the tag array.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteTag function writes a single ABFTag structure to the ABF file. All tags are
internally buffered to disk inside the ABFFILES module and written out to the file when ABF_
UpdateHeader() is called.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EWRITETAG Could not write data.

ABF_GetVoiceTag

BOOL ABF_GetVoiceTag(int nFile, const ABFFileHeader *pFH, UINT uTag, LPCSTR
pszFileName,

long lDataOffset, ABFVoiceTagInfo *pVTI, int *pnError)

Retrieves a voice tag from the ABF file.

Parameter Description

nFile ABF file handle.

pFH ABF file header.

uTag Tag number.

pszFileName File name of file to extract voice tag to.

lDataOffset Position of voice tag in file .

pVTI Voice Tag Info struct

pnError Address of error return code. May be NULL.

Comments

The ABF_GetVoiceTag function retrieves a voice tag from the ABF file.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADDATA Error reading data from file.

ABF_EREADTAG Error reading tag from file.

Example

#include “abffiles.h”

BOOL SaveVoiceTag(int nFile, ABFFileHeader *pFH, ABFTag *pTag)

{

Axon Binary File (ABF) Format User Guide

39 ABF Version 2.0.9

char szWAVFile[_MAX_PATH];

if(!ABFU_GetTempFileName("wav", 0, szWAVFile))

return FALSE;

// Extract the voice tag to the temp file.

ABFVoiceTagInfo VTI;

BOOL bReturn ABF_GetVoiceTag(nFile, pFH,

pTag->nVoiceTagNumber, szWAVFile, 0, &VTI, NULL);

if(!bReturn)

{

DeleteFile(szWAVFile);

return FALSE;

}

// and save it to the pending list

bReturn = ABF_SaveVoiceTag(m_hABFHandle, szWAVFile, 0, &VTI, NULL);

if(!bReturn)

DeleteFile(szWAVFile);

return bReturn;

}

ABF_SaveVoiceTag

BOOL ABF_SaveVoiceTag(int nFile, LPCSTR pszFileName, long lDataOffset,

ABFVoiceTagInfo *pVTI, int *pnError);

Saves a voice tag to the ABF file.

Parameter Description

hFile ABF file handle.

pszFileName File containing voice tag.

lDataOffset Position of voice tag in file .

pVTI Voice Tag Info struct

pnError Address of error return code. May be NULL.

Comments

The ABF_SaveVoiceTag function saves a voice tag from a temporary file to the ABF file.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_OUTOFMEMORY Could not allocate internal buffer.

Example

#include “abffiles.h”

BOOL SaveVoiceTag(int nFile, ABFFileHeader *pFH, ABFTag *pTag)

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 40

{

char szWAVFile[_MAX_PATH];

if(!ABFU_GetTempFileName("wav", 0, szWAVFile))

return FALSE;

// Extract the voice tag to the temp file.

ABFVoiceTagInfo VTI;

BOOL bReturn ABF_GetVoiceTag(nFile, pFH,

 pTag->nVoiceTagNumber, szWAVFile, 0, &VTI, NULL);

if(!bReturn)

{

DeleteFile(szWAVFile);

return FALSE;

}

// and save it to the pending list

bReturn = ABF_SaveVoiceTag(m_hABFHandle, szWAVFile, 0, &VTI, NULL);

if(!bReturn)

DeleteFile(szWAVFile);

return bReturn;

}

ABF_PlayVoiceTag

BOOL ABF_PlayVoiceTag(int nFile, const ABFFileHeader *pFH, UINT uTag, int *pnError)

Retrieves a voice tag, builds a WAV file, plays the WAV file and cleans up.

Retrieves a voice tag from the ABF file.

Parameter Description

nFile ABF file handle.

pFH ABF file header.

uTag Tag number.

pnError Address of error return code. May be NULL.

Comments

The ABF_PlayVoiceTag function retrieves a voice tag from the ABF file, builds a WAV file,
plays the WAV file and cleans up.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_BADTEMPFILE Error creating WAV file.

Example

#include “abffiles.h”

Axon Binary File (ABF) Format User Guide

41 ABF Version 2.0.9

void ProcessVoiceTags(char *pszDataFile, ABFFileHeader *pFH)

{

int nFile;

int nErrorNum = 0;

UINT uMaxSamples = 0;

DWORD dwMaxEpi = 0;

if (!ABF_ReadOpen(pszDataFile, &nFile, ABF_DATAFILE, pFH,

&uMaxSamples, &dwMaxEpi, &nErrorNum))

{

ShowABFError(nErrorNum, pszDataFile);

return;

}

if ((pFH->lVoiceTagPtr == 0) || (pFH->lVoiceTagEntries == 0))

{

ABF_Close(nFile, NULL);

Pause_printf("Data file does not contain any voice tags.\n");

return;

 }

for (UINT i=0; i< UINT(pFH->lVoiceTagEntries); i++)

if (!ABF_PlayVoiceTag(nFile, pFH, i, &nErrorNum))

break;

ABF_Close(nFile, NULL);

if (nErrorNum)

ShowABFError(nErrorNum, g_szDataFile);

}

ABF_ReadDeltas

BOOL ABF_ReadDeltas(int nFile, const ABFFileHeader *pFH, DWORD dwFirstDelta,

ABFDelta *pDeltaArray, UINT uNumDeltas, int *pnError)

This function reads a Delta array from the DeltaArray section of the ABF file.

Parameter Description

nFile ABF file handle.

pFH ABF file Header.

dwFirstDelta The first delta to read.

pDeltaArray ABFDelta structure.

uNumDeltas The number of deltas to read.

pnError Address of error return code. May be NULL.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 42

Comments

The ABF_ReadDeltas function reads a Delta array (pDeltaArray) from the DeltaArray section of
the ABF file.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADDELTA Error reading delta from file

ABF_ENODELTAS File does not contain any delta information.

ABF_EREADTAG Error reading tag from file

Example

static void ShowDeltas(char *pszDataFile, ABFFileHeader *pFH)

{

int nFile;

int nErrorNum = 0;

UINT uMaxSamples = 0;

DWORD dwMaxEpi = 0;

if (!ABF_ReadOpen(pszDataFile, &nFile, ABF_DATAFILE, pFH, &uMaxSamples,

&dwMaxEpi, &nErrorNum))

{

ShowABFError(nErrorNum, g_szDataFile);

 return;

}

if ((pFH->lDeltaArrayPtr <= 4) || (pFH->lNumDeltas < 1))

{

ABF_Close(nFile, NULL);

Pause_printf("Data file does not contain any deltas.\n");

return;

}

ABFDelta Delta;

char szText[80];

for (DWORD i=0; i<(DWORD)pFH->lNumDeltas; i++)

{

if (!ABF_ReadDeltas(nFile, pFH, i, &Delta, 1, &nErrorNum))

{

ABF_Close(nFile, NULL);

ShowABFError(nErrorNum, g_szDataFile);

return;

Axon Binary File (ABF) Format User Guide

43 ABF Version 2.0.9

}

Pause_printf("%7lu %8ld ", i+1, Delta.lDeltaTime);

if(ABF_FormatDelta(pFH, &Delta, &szText[0], sizeof(szText), &nErrorNum)
)

Pause_printf(" %s \n", szText);

else

{

ABF_Close(nFile, NULL);

ShowABFError(nErrorNum, g_szDataFile);

return;

}

}

ABF_Close(nFile, NULL);

}

ABF_WriteDelta

BOOL ABF_WriteDelta(int nFile, ABFFileHeader *pFH, const ABFDelta *pDelta, int *pnError)

Writes a delta (a parameter which is changed during a recording) to a temporary file.

Parameter Description

nFile ABF file handle.

pFH ABF File Header.

pDelta ABFDelta structure.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteDelta function writes the details af a parameter which is changed during a
recording, to a temporary file. The deltas are written to the ABF file by ABF_Update.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADONLYFILE The file is read only.

ABF_FormatDelta

BOOL ABF_FormatDelta(const ABFFileHeader *pFH, const ABFDelta *pDelta, char *pszText,

UINT uTextLen, int *pnError)

This function builds an ASCII string to describe a delta.

Parameter Description

pFH ABF File Header.

pDelta ABFDelta structure.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 44

Parameter Description

pszText The text buffer.

uTextLen Length of the text buffer.

pnError Address of error return code. May be NULL.

Comments

The ABF_FormatDelta function builds an ASCII string (pszText) to describe a delta (pDelta).

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADDELTAID The Delta has an unknown parameter ID.

Example

static void ShowDeltas(char *pszDataFile, ABFFileHeader *pFH)

{

int nFile;

int nErrorNum = 0;

UINT uMaxSamples = 0;

DWORD dwMaxEpi = 0;

if (!ABF_ReadOpen(pszDataFile, &nFile, ABF_DATAFILE, pFH, &uMaxSamples,

&dwMaxEpi, &nErrorNum))

{

ShowABFError(nErrorNum, g_szDataFile);

return;

 }

if ((pFH->lDeltaArrayPtr <= 4) || (pFH->lNumDeltas < 1))

{

ABF_Close(nFile, NULL);

Pause_printf("Data file does not contain any deltas.\n");

return;

}

ABFDelta Delta;

char szText[80];

for (DWORD i=0; i<(DWORD)pFH->lNumDeltas; i++)

{

if (!ABF_ReadDeltas(nFile, pFH, i, &Delta, 1, &nErrorNum))

{

Axon Binary File (ABF) Format User Guide

45 ABF Version 2.0.9

ABF_Close(nFile, NULL);

ShowABFError(nErrorNum, g_szDataFile);

return;

}

Pause_printf("%7lu %8ld ", i+1, Delta.lDeltaTime);

if(ABF_FormatDelta(pFH, &Delta, &szText[0], sizeof(szText), &nErrorNum
))

Pause_printf(" %s \n", szText);

else

{

ABF_Close(nFile, NULL);

ShowABFError(nErrorNum, g_szDataFile);

return;

}

}

ABF_Close(nFile, NULL);

}

ABF_ReadScopeConfig

BOOL ABF_ReadScopeConfig(int nFile, ABFFileHeader *pFH, ABFScopeConfig *pCfg,

UINT uMaxScopes, int *pnError)

Retrieves the scope configuration info from the data file.

ABF_WriteScopeConfig

BOOL ABF_WriteScopeConfig(int nFile, ABFFileHeader *pFH, int nScopes,

ABFScopeConfig *pCfg, int *pnError)

Saves the current scope configuration info to the data file.

ABF_ReadStatisticsConfig

#include “abffiles.h”

BOOL ABF_WriteStatisticsConfig(int nFile, ABFFileHeader *pFH,

const ABFScopeConfig *pCfg, int *pnError);

Read the scope configuration structure for the statistics window from the ABF file.

Parameter Description

nFile ABF file handle.

pFH ABFFileHeader.

pCfg ABFScopeConfig.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteStatisticsConfig function writes the ABFScopeConfig structure to the ABF file.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 46

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_ENOSTATISTICSCONFIG The file has no statistics window infomation.

ABF_EREADSTATISTICSCONFIG There was an error reading the statistics window

configuration.

Example

#include “abffiles.h”

BOOL CopyStatsConfig(ABFFileHeader *pFI, ABFFileHeader *pFO)

{

if (pFI.lStatisticsConfigPtr)

{

static ABFScopeConfig StatsCfg;

if (!ABF_ReadStatisticsConfig(nFileIn, pFI, &StatsCfg, &nErrorNum))

ErrorReturn(nErrorNum);

if (!ABF_WriteStatisticsConfig(nFileOut, pFO, &StatsCfg, &nErrorNum))

ErrorReturn(nErrorNum);

}

return TRUE;

}

ABF_WriteStatisticsConfig

#include “abffiles.h”

BOOL ABF_WriteStatisticsConfig(int nFile, ABFFileHeader *pFH,

const ABFScopeConfig *pCfg, int *pnError);

Write the scope config structure for the statistics window out to the ABF file.

Parameter Description

nFile ABF file handle.

pFH ABFFileHeader.

pCfg ABFScopeConfig.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteStatisticsConfig function writes the ABFScopeConfig structure to the ABF file.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EREADONLYFILE The file is read only.

ABF_EDISKFULL The disk is full.

Axon Binary File (ABF) Format User Guide

47 ABF Version 2.0.9

Example

#include “abffiles.h”

BOOL CopyStatsConfig(ABFFileHeader *pFI, ABFFileHeader *pFO)

{

if (pFI.lStatisticsConfigPtr)

{

static ABFScopeConfig StatsCfg;

if (!ABF_ReadStatisticsConfig(nFileIn, pFI, &StatsCfg, &nErrorNum))

ErrorReturn(nErrorNum);

if (!ABF_WriteStatisticsConfig(nFileOut, pFO, &StatsCfg, &nErrorNum))

ErrorReturn(nErrorNum);

}

return TRUE;

}

ABF_WriteDACFileEpi

#include "abffiles.h"

BOOL ABF_WriteDACFileEpi(int hFile, ABFFileHeader *pFH,

short *pnDACArray, int *pnError);

Writes a sweep to the DAC file section.

Parameter Description

hFile ABF file handle.

pFH Pointer to acquisition parameters.

pnDACArray Data buffer of the data.

pnError Address of error return code. May be NULL.

Comments

The ABF_WriteDACFileEpi function writes a sweep from pnDACArray to the DAC file section
of hFile.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EWRITEDACEPISODE Could not write data.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 48

ABF_WriteRawData

#include "abffiles.h"

BOOL ABF_WriteRawData(int hFile, void *pvBuffer, DWORD dwSizeInBytes, int *pnError);

Writes a raw data buffer to the ABF file at the current file position.

Parameter Description

hFile ABF file handle.

pvBuffer Pointer to the buffer of data to write.

dwSizeInBytes The amount (in bytes) of data to write.

pnError Address of error return code. May be NULL.

Comments

This routine writes a raw buffer of binary data to the current position of an ABF file previously
opened with a call to ABF_WriteOpen. This routine is provided for acquisition programs that
buffer up episodic data and then write it out in large chunks. This provides an alternative to
retrieving the low-level file handle and acting on it, as this can be non-portable, and
assumptions would have to be made regarding the type of file handle returned (DOS or “C”
runtime).

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EDISKFULL The destination drive is out of disk space.

ABF_EREADONLYFILE File was opened with ABF_ReadOpen

ABF_EBADFILEINDEX Bad ABF file handle passed in.

Miscellaneous Functions

Routine Use

ABF_BuildErrorText on page 49 Build an error string from an error number and a file

name.

ABF_EpisodeFromSynchCount on page 51 Find the sweep that contains a particular synch

count.

ABF_FormatTag on page 52 This function reads a tag from the TagArray section

and formats it as ASCII text.

ABF_GetEpisodeDuration on page 52 Get the duration of a given sweep in ms.

ABF_GetEpisodeFileOffset on page 53 Returns the sample point offset in the ABF file for the

start of the given sweep number that is passed as an

argument.

ABF_GetMissingSynchCount on page 53 Get the count of synch counts missing before the

start of this sweep and the end of the previous

sweep.

Axon Binary File (ABF) Format User Guide

49 ABF Version 2.0.9

Routine Use

ABF_GetNumSamples on page 55 Get the number of samples in this sweep.

ABF_GetStartTime on page 56 Gets the start time in ms for the specified sweep.

ABF_HasData on page 57 Checks whether an open ABF file has any data in it.

WINAPI ABF_HasOverlappedData on page 57 Determines if there is any overlapped data in the file.

ABF_IsABFFile on page 58 Checks the data format of a given file.

ABF_SetErrorCallback on page 59 This routine sets a callback function to be called in

the event of an error occuring.

ABF_SynchCountFromEpisode on page 59 Find the synch count at which a particular sweep

started.

ABF_BuildErrorText

#include "abffiles.h"

BOOL ABF_BuildErrorText(int nError, const char *szFileName,

char *szTxtBuf, UINT uMaxLen);

The ABF_BuildErrorText function builds an error message for the specified error number.

Parameter Description

nError Error number to create message from.

szFileName Name of file.

szTxtBuf Buffer for error text.

uMaxLen Size of szTxtBuf.

Returns

If nErrorNum contains a valid error number, this function places the generated text into szTxtBuf
and returns TRUE, otherwise it returns FALSE.

Comments

The ABF_BuildErrorText function builds an error message based on nErrorNum and
szFileName.

Example

#include "abffiles.h"

BOOL ShowABFError(char *szFileName, int nError)

{

char szTxt[80];

if (!ABF_BuildErrorText(nError, szFileName, szTxt, sizeof(szTxt)))

sprintf(szTxt, "Unknown error number: %d\r\n", nError);

printf("ERROR: %s\n", szTxt);

return FALSE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 50

ABF_EpisodeFromSynchCount

#include "abffiles.h"

BOOL ABF_EpisodeFromSynchCount(int hFile, ABFFileHeader *pFH,

DWORD *pdwSampleNumber, DWORD *pdwEpisode,
int *pnError);

Finds the sweep number that contains a specified synch count.

Parameter Description

hFile ABF file handle.

pdwSynchCount Address of synch count to search for.

pdwEpisode Address of sweep number that contains the requested synch count.

pnError Address of error return code. May be NULL.

Comments

The ABF_EpisodeFromSynchCount function finds the sweep number for the specified synch
count, and stores it in *pdwEpisode.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL FindAnEpisode(char *pszFileName, DWORD *pdwSample,

DWORD *pdwEpisode)

{

int hFile;

int nError = 0;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE,

&FH, &uMaxSamples, &dwMaxEpi, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_EpisodeFromSynchCount(hFile, &FH, pdwSynchCount, pdwEpisode,
&nError))

{

ABF_Close(hFile, NULL);

Axon Binary File (ABF) Format User Guide

51 ABF Version 2.0.9

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF_FormatTag

#include "abffiles.h"

BOOL ABF_FormatTag(int hFile, ABFFileHeader *pFH, long lTagNumber, char *pszBuffer,

UINT uSize, int *pnError)

This function reads a tag from the TagArray section and formats it as ASCII text.

Parameter Description

hFile ABF file handle.

pFH File header for the file as returned by ABF_WriteOpenABF_WriteOpen .

lTagNumber Number of the tag entry to format. (The first tag is tag 0)

pszBuffer The buffer to receive the formatted text.

uSize The size of the buffer pointed to by pszBuffer.

pnError Address of error return code. May be NULL.

Comments

If tag number -1 is requested, the ASCII text returns column headings.

ABF_GetEpisodeDuration

BOOL ABF_GetEpisodeDuration(int nFile, ABFFileHeader *pFH, DWORD dwEpisode,

double *pdDuration, int *pnError)

Get the duration of a given sweep in ms.

Parameter Description

nFile ABF file handle.

pFH File header for the file as returned by ABF_ReadOpen.

dwEpisode Sweep number to return the start time of. (First sweep is sweep 1).

pdDuration The location in which to return the start time of the sweep in ms.

pnError Address of error return code. May be NULL.

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 52

ABF_GetEpisodeFileOffset

BOOL ABF_GetEpisodeFileOffset(int nFile, ABFFileHeader *pFH, DWORD dwEpisode,

DWORD *pdwFileOffset, int *pnError)

Returns the sample point offset in the ABF file for the start of the given sweep number that is
passed as an argument.

Parameter Description

nFile ABF file handle.

pFH File header for the file as returned by ABF_ReadOpen.

dwEpisodel Sweep number to return the start position of. (First sweep is sweep 1).

pdwFileOffset Points to the location in which to return the sample offset of the start of the

sweep (in samples per channel).

pnError Address of error return code. May be NULL.

ABF_GetMissingSynchCount

#include "abffiles.h"

BOOL ABF_GetMissingSynchCount(inthFile, DWORDdwEpisode,
DWORD *pdwMissingSamples, int *pnError);

Returns the number of synch counts missing before the specified sweep (event detected files
only).

Parameter Description

hFile ABF file handle.

dwEpisode Sweep number.

pdwMissingSamples Number of synch count absent prior to this sweep.

pnError Address of error return code. May be NULL.

Comments

The ABF_GetMissingSynchCount function finds the number of synch count missing for event
detected data for the specified sweep, and stores it in *pdwMissingSynchCount.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL CopyDataFile(char *pszFileIn, int nFileIn, ABFFileHeader *pFI,

char *pszFileOut, int nFileOut, ABFFileHeader *pFO)

{

Axon Binary File (ABF) Format User Guide

53 ABF Version 2.0.9

UINT uNumSamples = (UINT)pFI->lNumSamplesPerEpisode;

DWORD dwEpiStart, dwMissingSamples;

short *pnBuffer = (short *)malloc(uNumSamples * sizeof(short));

if (!pnBuffer)

{

printf("Out of memory!\n");

return FALSE;

}

for (DWORD i=1; i<=(DWORD)pFI->lActualEpisodes; i++)

{

UINT uFlag = 0;

int nError = 0;

if (!ABF_MultiplexRead(nFileIn, pFI, i, pnBuffer, &uNumSamples,

&nError))

return ShowABFError(pszFileIn, nError);

if (!ABF_SynchCountFromEpisode(nFileIn, pFI, i, &dwEpiStart,

&nError))

return ShowABFError(pszFileIn, nError);

if (pFI->nOperationMode == ABF_VARLENEVENTS)

{

if (!ABF_GetMissingSynchCount(nFileIn, pFI, I,

&dwMissingSynchCount, &nError))

return ShowABFError(pszFileIn, nError);

if (dwMissingSynchCount == 0)

uFlag = ABF_APPEND;

}

if (!ABF_MultiplexWrite(nFileOut, pFO, uFlag, pnBuffer,

dwEpiStart, uNumSamples, &nError))

return ShowABFError(pszFileOut, nError);

}

return TRUE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 54

ABF_GetNumSamples

#include "abffiles.h"

BOOL ABF_GetNumSamples(int hFile, DWORD dwEpisode,

UINT *puNumSamples, int *pnError);

Finds the number of sampleSamples in the specified sweep.

Parameter Description

hFile ABF file handle.

dwEpisode Interesting sweep number.

puNumSamples Number of data points in this sweep.

pnError Address of error return code. May be NULL.

Comments

The ABF_GetNumSamples function finds the number of samples in the specified sweep, and
returns it in *puNumSamples.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL HowManySamples(char *pszFileName, DWORD dwSweep)

{

int hFile;

int nError;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 0;

UINT uNumSamples;

uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE, &FH,

&uMaxSamples, &dwMaxEpi, &nError))

return ShowABFError(pszFileName, nError);

if (!ABF_GetNumSamples(hFile, &FH, dwSweep, &uNumSamples,

&nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

Axon Binary File (ABF) Format User Guide

55 ABF Version 2.0.9

ABF_Close(hFile, NULL);

printf("The number of samples is %u\n", uNumSamples);

return TRUE;

}

ABF_GetStartTime

#include "abffiles.h"

BOOL ABF_GetStartTime(int nFile, ABFFileHeader *pFH, int nChannel,

DWORD dwSweep, float *pfStartTime, int *pnError);

Gets the start time in ms for the specified sweep.

Parameter Description

hFile ABF file handle.

pFH File header for the file as returned by ABF_ReadOpen.

nChannel ADC channel of interest.

dwEpisode Sweep number to return the start time for.

pfStartTime Location in which to return the start time in ms.

pnError Address of error return code. May be NULL.

Comments

The ABF_GetStartTime function returns the time at which the sweep of interest in the channel
specified started.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL GetStartEndTime(int nChannel, DWORD dwEpisode, float *pfTimeBase,

float *pfStartTime, float *pfEndTime,

int *pnError)

{

if (ABF_GetStartTime(GetFileHandle(), &GetFileHeader(),

nChannel, dwEpisode,

&fStartTime, pnError) == FALSE)

return FALSE;

UINT uSamples = GetNumberSamples(GetMaximumEpisodes() - 1, NULL);

// Compensate for the length of the last trace

fStartTime += pfTimeBase;

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 56

// Add another trace to put space between us and the last trace

fStartTime += pfTimeBase;

if(pfStartTime != NULL)

*pfStartTime = fStartTime;

if(pfEndTime != NULL)

{

UINT uSamples = GetNumberSamples(dwEpisode, NULL);

 *pfEndTime = fStartTime + pfTimeBase;

}

return TRUE;

}

ABF_HasData

#include "abffiles.h"

void ABF_HasData(int nFile, ABFFileHeader *pFH);

Checks whether an open ABF file has any data in it.

Parameter Description

hFile ABF file handle.

pFH File header for the file as returned by ABF_ReadOpen or ABF_WriteOpen

Comments

The ABF_HasData function will examine an open ABF file and return TRUE if there is any data
in the file, and FALSE if there is not.

Example

#include "abffiles.h"

WINAPI ABF_HasOverlappedData

#include “Abffiles.h”

BOOL WINAPI ABF_HasOverlappedData(int nFile, BOOL *pbHasOverlapped, int *pnError)

Returns true if the file contains overlapped data.

Parameter Description

nFile ABF file handle.

pbHasOverlapped True if file contains overlapped data.

pnError Address of error return code. May be NULL.

Comments

The ABF_HasOverlappedData determines if there is any overlapped data in the file. This can
only occur in Fixed-length events detected mode when one sweep finishes after the following
one starts.

Axon Binary File (ABF) Format User Guide

57 ABF Version 2.0.9

Possible Error Codes

The following error code may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_ EWRITEONLYFILE The file is write only.

Example

#include "abffiles.h"

BOOL OpenABFFile(char *pszFileName, BOOL *pbOverlappedData)

{

int hFile;

int nError = 0;

ABFFileHeader FH;

DWORD dwMaxEpi = 0;

UINT uMaxSamples = 16 * 1024;

if (!ABF_ReadOpen(pszFileName, &hFile, ABF_DATAFILE,

&FH, &uMaxSamples, &dwMaxEpi, &nError))

 return ShowABFError(pszFileName, nError);

if(!ABFHasOverlappedData(&hFile, pbOverlappedData, &nError)

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF_IsABFFile

#include "abffiles.h"

void ABF_IsABFFile(const char *pszFileName, int *pnDataFormat, int *pnError);

Checks the data format of a given file.

Parameter Description

pszFileName Path name of the file to be tested.

pnDataFormat Location to return the value of nDataFormat if it is an ABF file. May be NULL.

pnError Address of error return code. May be NULL.

Comments

The ABF_IsABFFile function is used to determine firstly whether a file is an ABF file, and then if
it is an ABF file, what type of ABF file it is. The value returned in the location pointed to by
pnDataFormat will be the same value in the nDataFormat field in the header of the file if it is an
ABF file.

Example

#include "abffiles.h"

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 58

ABF_SetErrorCallback

typedef BOOL (AXOAPI *ABFCallback)(void *pvThisPointer, int nError);

BOOL ABF_SetErrorCallback(int nFile, ABFCallback fnCallback, void *pvThisPointer, int
*pnError)

This routine sets a callback function to be called in the event of an error occurring.

ABFCallback

typedef BOOL (AXOAPI *ABFCallback)(void *pvThisPointer, int nError);

ABF_SynchCountFromEpisode

#include "abffiles.h"

BOOL ABF_SynchCountFromEpisode(int hFile, const ABFFileHeader *pFH, DWORD
dwEpisode,

DWORD *pdwSynchCount, int *pnError);

Finds the synch count for the start of the specified sweep number.

Parameter Description

hFile ABF file handle.

dwEpisode Sweep number that is being searched for.

pdwSynchCount Synch count of the first point in the sweep.

pnError Address of error return code. May be NULL.

Comments

The ABF_SynchCountFromEpisode function finds the synch count point number for the start of
the specified sweep number. It sets *pdwSynchCount to the synch count of the first point in the
sweep.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EEPISODERANGE Sweep number out of range.

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL CopyDataFile(char *pszFileIn, int nFileIn, ABFFileHeader *pFI,

char *pszFileOut, int nFileOut, ABFFileHeader *pFO)

{

UINT uNumSamples = (UINT)pFI->lNumSamplesPerEpisode;

DWORD dwEpiStart, dwMissingSamples;

short *pnBuffer = (short *)malloc(uNumSamples * sizeof(short));

if (!pnBuffer)

Axon Binary File (ABF) Format User Guide

59 ABF Version 2.0.9

{

printf("Out of memory!\n");

return FALSE;

}

for (DWORD i=1; i<=(DWORD)pFI->lActualEpisodes; i++)

{

UINT uFlag = 0;

int nError = 0;

if (!ABF_MultiplexRead(nFileIn, pFI, i, pnBuffer, &uNumSamples,

&nError))

return ShowABFError(pszFileIn, nError);

if (!ABF_SynchCountFromEpisode(nFileIn, pFI, i, &dwEpiStart,

&nError))

return ShowABFError(pszFileIn, nError);

if (pFI->nOperationMode == ABF_VARLENEVENTS)

{

if (!ABF_GetMissingSynchCount(nFileIn, pFI, I,

&dwMissingSynchCount, &nError))

return ShowABFError(pszFileIn, nError);

if (dwMissingSynchCount == 0)

uFlag = ABF_APPEND;

}

if (!ABF_MultiplexWrite(nFileOut, pFO, uFlag, pnBuffer,

dwEpiStart, uNumSamples, &nError))

return ShowABFError(pszFileOut, nError);

}

return TRUE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 60

Use With Care!

The following functions are strictly a violation of the design and modularization of the ABF file
I/O routines, but they are provided for the use of time-critical acquisition programs that require
maximum efficiency when doing file I/O during data acquisition.

Routine Use

ABF_GetSynchArray on

page 61

Returns a pointer to the CSynch object used to buffer the Synch array

to disk.

ABF_GetFileHandle on

page 61

Returns the DOS file handle associated with the specified file.

ABF_

UpdateAfterAcquisition on

page 63

Update the ABF internal housekeeping after data has been written

into a data file without using the ABF file I/O routines.

ABF_GetSynchArray

void *ABF_GetSynchArray(int nFile, int *pnError)

Returns a pointer to the CSynch object used to buffer the Synch array to disk.

CAUTION! Use with care!

ABF_GetFileHandle

#include "abffiles.h"

BOOL ABF_GetFileHandle(int hFile, HANDLE *phHandle, int *pnError);

Returns the DOS file handle associated with the specified file. This function should not need to
be called if all access to ABF files are performed through the ABF file routines. It is provided for
debugging purposes and for acquisition programs that do their own file I/O for performance
reasons.

Parameter Description

hFile ABF file handle.

phHandle DOS file handle.

pnError Address of error return code. May be NULL.

Comments

The ABF_GetFileHandle function sets *phHandle to the DOS file handle associated with the
file specified in hFile. If the file is written to through the handle obtained by this function, then
ABF_UpdateAfterAcquisition must be called prior to ABF_UpdateHeader.

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

Axon Binary File (ABF) Format User Guide

61 ABF Version 2.0.9

BOOL Acquisition(char *pszFileName, ABFFileHeader *pFH)

{

int hFile;

HANDLE hHandle;

int nError = 0;

DWORD dwEpisodes, dwSamples;

if (!ABF_WriteOpen(pszFileName, &hFile, ABF_DATAFILE, pFH,

&nError))

return ShowABFError(pszFileName, nError);

if (!ABF_GetFileHandle(hFile, &hHandle, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

AcquireAndWriteData(hHandle, pFH, &dwEpisodes, &dwSamples);

if (!ABF_UpdateAfterAcquisition(hFile, pFH, dwEpisodes, dwSamples,

&nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_UpdateHeader(hFile, pFH, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

Chapter 3: The ABF File I/O Functions

ABF Version 2.0.9 62

ABF_UpdateAfterAcquisition

#include "abffiles.h"

BOOL ABF_UpdateAfterAcquisition(ABFFileHeader *pFH,

DWORD dwAcquiredEpisodes, DWORD dwAcquiredSamples,
int *pnError);

Update the ABF internal housekeeping after data has been written into a data file without using
the ABF file I/O routines. This function should not need to be called if all access to ABF files are
performed through the ABF file routines. It is provided for debugging purposes and for
acquisition programs that do their own file I/O for performance reasons.

Parameter Description

hFile ABF file handle.

pFH File header returned from the ABF_WriteOpen call for this file.

dwAcquiredEpisodes Number of acquired sweeps.

dwAcquiredSamples Number of acquired samples.

pnError Address of error return code. May be NULL.

Comments

The ABF_UpdateAfterAcquisition function updates ABF internal housekeeping of acquired
data. This function must be called before ABF_UpdateHeader if the file has been written to via
the handle obtained by ABF_GetFileHandle on page 61

Possible Error Codes

One of the following error codes may be returned on error (defined in ABFFILES.H).

Constant Meaning

ABF_EBADFILEINDEX Invalid ABF file handle specified.

Example

#include "abffiles.h"

BOOL Acquisition(char *pszFileName, ABFFileHeader *pFH)

{

int hFile;

HANDLE hHandle;

int nError = 0;

DWORD dwEpisodes, dwSamples;

if (!ABF_WriteOpen(pszFileName, &hFile, ABF_DATAFILE, pFH,

&nError))

return ShowABFError(pszFileName, nError);

if (!ABF_GetFileHandle(hFile, &hHandle, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

Axon Binary File (ABF) Format User Guide

63 ABF Version 2.0.9

AcquireAndWriteData(hHandle, pFH, &dwEpisodes, &dwSamples);

if (!ABF_UpdateAfterAcquisition(hFile, pFH, dwEpisodes, dwSamples,

&nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_UpdateHeader(hFile, pFH, &nError))

{

ABF_Close(hFile, NULL);

return ShowABFError(pszFileName, nError);

}

if (!ABF_Close(hFile, &nError))

return ShowABFError(pszFileName, nError);

return TRUE;

}

ABF Version 2.0.9 65

Appendix A: ABF Hardware and Storage Limits

Some of the more important limitations in the range of hardware supported and the size of
components in ABF formatted files are listed here.

Sixteen physical ADC channels, numbered 0 to 15.
Up to sixteen bits per ADC word.
Up to 1,032,258 multiplexed samples per sweep in High-speed oscilloscope mode, Fixed-
length events mode and Episodic stimulation mode.
Up to 2 G multiplexed samples per segment in Variable-length events mode and Gap-free
mode.
Stimulus waveform can be generated on up to eight DAC channels simultaneously
(digitizer dependent).
Pre-sweep Train (previously called Conditioning Train) can be generated on all DAC
channels simultaneously.
One Math channel.
Up to 16 telegraphed instruments (digitizer dependent)
P/N Leak Subtraction can be applied to ADC channels simultaneously.
One set of display amplifications and offsets.
Only one averaged run per file!

File ID and Size Information

Field Name Type Description

float fFileVersionNumber File format version stored in the data file during

acquisition. Present version is 2.0

short nOperationMode Operation mode: 1 = Event-driven, variable length; 2 =

Event-driven, fixed length; 3 = Gap-free; 4 = High Speed

Oscilloscope; 5 = Episodic stimulation (Clampex

software only).

long lActualAcqLength Actual number of ADC samples (aggregate) in data

file. See lAcqLength. Averaged sweeps are included.

short nNumPointsIgnored Number of points ignored at data start. Normally zero,

but non-zero for gap-free acquisition using AXOLAB

configurations with one or more ADS boards.

long lActualEpisodes Actual number of sweeps in the file including averaged

sweeps. See lEpisodesPerRun. If nOperationMode = 3

(gap-free) the value of this parameter is 1.

UINT uFileStartDate Date when the data portion of the file was first written.

Stored as YYYYMMDD

UINT uFileStartTimeMS Time of day in milliseconds past midnight when data

portion of this file was first written to.

A

Axon Binary File (ABF) Format User Guide

66 ABF Version 2.0.9

Field Name Type Description

long lStopwatchTime Time since the stopwatch was zeroed that the data

portion of this file was first written to. Not supported by

all programs. Default = 0.

float fHeaderVersionNumber Version number of the header structure returned by the

ABF_ReadOpen function. Currently 2.0. This parameter

does not identify the data file format. See

fFileVersionNumber.

short nFileType Type of file. 1 = ABF file; 2 = Old FETCHEX file (FTCX); 3

= Old Clampex software file (CLPX). See sFileType.

ABF Version 2.0.9 67

Glossary

ADC, A/D
Analog-to-Digital converter.

char
String containing a fixed number of one-byte characters. (Not NULL terminated.)

DAC, D/A
Digital-to-Analog converter.

DWORD
32-bit unsigned integer

Episode
Synonym for “Sweeps”. Used by pClamp 6 and earlier versions.

Episodic Stimulation
In this mode, a number of equal-length sweeps (also known as episodes) are acquired. A set
of parametrically related sweeps is called a run. Runs can be repeated a specified number of
times to form a trial. If runs are repeated, the corresponding sweeps in each run are
automatically averaged and the trial contains only the average. The trial is stored in a file. Only
one trial can be stored in an ABF file.

File
Each ABF data file contains one trial.

Fixed-Length Event-Driven
Data acquisition is initiated in segments whenever a threshold-crossing event is detected. A
pre-trigger portion below threshold is acquired. Unlike variable-length event-driven
acquisition, the length of each segment of data is a pre-specified constant for all segments.
For this reason, the segments are often referred to as sweeps. In this mode, every threshold
crossing triggers a sweep, therefore fixed-length event-driven mode is also sometimes
referred to as loss-free oscilloscope mode. If a second event occurs before the current
sweep is finished, a second sweep is acquired triggered from the second event. This
occurrence is referred to as overlap. In this case, consecutive sweeps in the data file contain
redundant data.

The precise start time and length of each sweep is stored in the Synch Array. Although the
length of each sweep is redundant in this mode, it is stored in order to simplify reading and
writing of the Synch Array. Similarly, the storage of redundant data during overlap is not strictly
necessary, but it simplifies analysis and display for each sweep to be returned as a fixed-length
sweep with a known and constant trigger time. Since no triggers are lost, fixed-length event-
driven acquisition is ideal for the statistical analysis of constant-width events such as action
potentials.

Axon Binary File (ABF) Format User Guide

68 ABF Version 2.0.9

float
IEEE floating point format, 4 bytes long.

Gap-Free
Gap-free ABF files contain a single sweep of up to 4 GB of multiplexed data. A uniform
sampling interval is used throughout. There is no stimulus waveform associated with gap-free
data.

Gap-free mode is usually used for the continuous acquisition of data in which there is fairly
uniform activity over time.

Hierarchy
A File contains one Trial. A Trial contains one or more Runs. A Run contains one or more
Sweeps. A Sweep contains one or more ADC channels.

High-Speed Oscilloscope
In high-speed oscilloscope mode a pre-trigger portion before the threshold is acquired. Unlike
fixed-length event-driven acquisition, in high-speed oscilloscope mode not every threshold
crossing triggers a sweep. The emphasis is on allowing the digitizer to be used at the highest
possible sampling rate. Like a real high-speed oscilloscope, there is a "dead time" at the end
each sweep during which the display is updated and the trigger circuit is re-armed. Threshold
crossings that arrive during this dead time are simply ignored. Similarly, second and
subsequent threshold crossings during a sweep do not start a new sweep. Thus there is no
storage of overlapping (redundant) data.

Instrument
Refers to the external measurement equipment. For example, an Axopatch, an Axoclamp, or a
SmartProbe.

int
Signed integer of the native size of the CPU

long
Four byte signed integer.

Run
A group of related sweeps. ABF files contain only one Run per file, which is the averaged run
for all sweeps. Currently, the ABF routines only support one Run per file.

Sample
The datum produced by one A/D conversion or the datum describing one D/A output.

Sequence
A set containing one sample from each of the actively sampled input channels and one sample
for each of the actively generated output channels.

short
16-bit signed integer

Glossary

ABF Version 2.0.9 69

Signal Conditioner
A signal conditioner is a programmable analog device for applying filtering, gain and offset to
the signal before digitization. ABF formatted files store signal conditioning information for
each channel in the following arrays: fSignalGain, fSignalOffset, fSignalLowpassFilter,
fSignalHighpassFilter.

Sweep
A continuous set of data samples multiplexed from all A/D channels. pCLAMP version 6 and
earlier used the term “episode”.

Trace
A continuous set of data samples from a single A/D channel.

Trial
Non episodic files: A group of one or more sweeps acquired at one time. The start time and
length of each sweep are described in the SYNCH array.

Episodic files: If there was no averaging, a trial is the same as the single acquired run. If there
was averaging, the trial contains the average of the two or more acquired runs.

UINT
Unsigned integer of the native size of the CPU

User Units
ADC / DAC data is scaled in User Units (e.g. nA or mV) to take into account any scaling
performed in either hardware or software.

Variable-Length Event-Driven
Data acquisition is initiated in segments whenever a threshold-crossing event is detected. Pre-
trigger and trailing portions are also acquired. The length of the segment of data is determined
by the nature of the data, being automatically extended according to the amount of time that
the data exceeds the threshold. If the pre-trigger portion of the next event would overlap the
trailing portion of the current event, the current segment is extended. There is no storage of
overlapping data. The precise start time and length of each segment is stored in the Synch
Array. Variable-length event-driven acquisition is usually used for the continuous recording of
"bursting" data in which there are bursts of activity separated by long quiescent periods.

WORD
16-bit unsigned integer

The trademarks used herein are the property of Molecular Devices, LLC or their respective owners.
Specifications subject to changewithout notice. Patents: www.moleculardevices.com/patents
FOR RESEARCH USEONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES

©2021 Molecular Devices, LLC.
All rights reserved.
ABF Version 2.0.9

	Chapter 1: Axon Binary File Format Overview
	The ABF File Structure
	History
	Existing Applications
	Source Code
	Obtaining Support

	Chapter 2: The ABF Header
	ADC Channel Numbering
	Indexing Arrays in the ABF Header
	Unused Fields
	Version Numbers

	Chapter 3: The ABF File I/O Functions
	The ABF File I/O Functions by category
	Notes About ABF File I/O Functions
	File Open/Close
	High Level File Reading
	Low Level File Read/Write
	Miscellaneous Functions
	Use With Care!

	Appendix A: ABF Hardware and Storage Limits
	Glossary

