
The mathematical techniques of microarray analysis have been known to strike fear
into the hearts of experienced biologists. The purpose of this guide is to demystify
microarray analysis so that biologists can reclaim their data from the statisticians and
computer scientists who are taking over their discipline. 

Despite what your more mathematically inclined colleagues may tell you, microarray
data is relatively straightforward. It does not require any new statistical theories for its
analysis. Once you have analyzed your microarray images in GenePix Pro Software and
imported the GenePix Results (GPR) files into the Acuity database, there is a relatively
small number of filters and transformations that you need to apply to it before you can
start extracting meaningful biological information from it.

Biologists have been deluged in recent years by a large number of data mining
techniques that purport to be able to discover all sorts of information that is hidden in
microarray datasets. These techniques may be able to do all that is claimed for them.
However, there is one thing that they cannot do, because it is the prerogative of the
biologist alone. Because it is so important to keep in mind and apply at every stage of
microarray analysis, let us enshrine it in a principle:

First principle of microarray analysis

The output of every analysis algorithm that has been applied to microarray data is
meaningless until a biologist validates it.

You understand the biology of your own experiments better than any analysis
algorithm. With a small amount of knowledge of the mechanics of microarray analysis,
you can very quickly judge the performance of any analysis algorithm on your
experimental data, and whether or not it is useful. 

You can think of this first principle in another way: garbage in, garbage out. Analysis
algorithms are only as good as the data that they use as their inputs. 

For example, suppose you are doing a microarray experiment on different types of
cancer, and you are looking for substances that discriminate between the types.
However, the samples come from various different sources: some are peripheral blood,
some are fresh tissue and some are frozen tissue. There will be some substances that

behave differently among samples just because of the differences in preparation
methods. These substances may even show a higher level of differential expression
than any other substances in the dataset, so an algorithm looking for discriminating
substances will pick them out as being the best discriminators of the cancer types.
But these substances will only be artifacts of your sample preparation methods, and
you as a biologist will be able to recognize this immediately. No matter how powerful
it is, an analysis algorithm used unwisely will not be able to take into account these
differences. 

Having said that, you can only use your understanding of the biology to evaluate an
algorithm’s output if you have control of your data at every stage of the analysis
process. This is also crucially important, so let us formulate a second principle:

Second principle of microarray analysis

Data and the transformations that are applied to them must be available and
transparent at every stage of analysis.

One of the aims of this guide is to empower biologists to take back the analysis of
their data from black box software. You cannot do this unless you have access to your
data. For this reason, one of the design principles behind GenePix Pro and Acuity is to
allow users access to all their data at all times.

2 Data Types

Once a microarray image is analyzed in GenePix Pro and saved as a GenePix Results
(GPR) file, the GPR file is all that you have to reconstruct what happened to the
samples on that microarray. Although Acuity imports analysis JPEG images that
GenePix Pro saves during its analysis, and although you can refer back to them in
Acuity’s Features tab, they are used only for qualitative analysis; for example, to make
sure that all the features affected by an artifact are flagged Bad. It is the GPR file that
contains the details of the experiment. The entire purpose of a program like Acuity is
to transform and display data so that the huge amount of information that exists in the
set of GPR files from an experiment can be analyzed and interpreted.
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With that in mind, it should be clear that every column of data from every GPR file is
your friend. Every column says something about the image, and hence about your
experiment. 

To see a list of the various data types in a GPR file and available for analysis in Acuity,
open the Current Data Type to Retrieve dialog box. The top pane lists every GPR data
type (i.e. every column from the GenePix Pro Results tab), while the bottom pane lists
the operations that can be performed on the values of replicate features as the data is
retrieved from the database (more about this later in “Dataset Filtering and
Management”).

Even in a simple two-color experiment, GenePix Pro extracts approximately 50 different
data types for each microarray. There are feature intensities, background intensities,
ratio types, sums of various sorts, threshold parameters, and each of these has several
different variations. To use all this data wisely, you need to know a few basic facts
about microarray data types.

2.1 Means  and  medians

At every stage of microarray analysis, large numbers of data points are combined to
produce single representative measures: pixel values are combined to produce spot
intensities, intensities are combined to produce ratios, replicate ratios are combined to
produce substance values. Each time this is done, you have the choice of using the
mean or the median to produce a representative value.

The mean is sensitive to outliers in the set, and consequently a single very large or
very small value in an otherwise uniform set of numbers can produce a mean value
that is no longer representative of most of the members of the set.

The median is the number for which half the data points are higher and half are lower
(or if there is an even number of members of the set, it is the mean of the two in the
middle). A few large or small values in a set do not affect the median very much, as
all the representative numbers fall in the middle of the sorted list. If you are looking for
a value that is representative of most of the numbers in the set, use the median over
the mean.

The advantage of having both the median and the mean is twofold: you have the
choice of using one or the other, and you can look at the difference between the
median and the mean as a way of detecting the presence of outliers.

Other statistical quantities commonly reported can also tell you about the variation in
your data:

• The standard  deviation can be thought of as the average distance that individual 
data points fall from the mean: the larger the standard deviation, the more widely 
spread are the values in the set. 

• The coefficient  of  variation is the standard deviation divided by the mean, 
expressed as a percentage; that is, it is the standard deviation normalized 
by the mean. The coefficient of variation is a way of estimating the spread
of values in a set independently of the scale of the values.

22..11..11 AA  nnoottee  oonn  ccaallccuullaattiinngg  mmeeaannss

If you want to verify by hand any of the calculations done in Acuity (such as means),
be aware that different data types must be handled differently. The mean of ratio
values, for example, is calculated in log space (it is known as a geometric mean)
where the ratios are normally distributed and additive (see the next section). 

2.2 Ratios  and  logs

In standard two-color ratio experiments, we are interested in calculating a ratio value
for each spot as a measure of the activity of a substance, so we commonly look for
features with ratios above 2 or less than 0.5, for example, or above 4 or less than
0.25. However, typically we do not work with ratios, but with log ratios.

You can see why we do this with a very simple example. Consider two spots on a
microarray, one with a ratio of 2, and the other with a ratio of 0.5: one is twofold
induced, the other is twofold repressed. The mean of these two spots should therefore
be 1. But the mean of 2 and 0.5 is 1.25. What has gone wrong?

The problem is that ratios are not normally distributed; whereas log ratios are. If we
take logs (to the base 2) of 2 and 0.5, we get 1 and –1, and then the mean of these is
0. The antilog of 0 is 1, and we get the mean that we expect.

(Internally, Acuity keeps track of properties of each data type so that when performing
various mathematical operations, such as averaging and normalization, data types are
always handled appropriately. You can view and edit these properties in the Remap
Data Types dialog box.)

22..22..11 SSccaatttteerr  pplloottss

When dealing with entire microarrays, scatter plots and histograms can very quickly
tell us a great deal about what is occurring on a microarray. They also demonstrate
very vividly the value of using log ratios over ratios.

Suppose we are interested in whether or not the ratios on a microarray change with the
intensity of features; that is, we want to know if there is a dye bias in our data. We
might do a scatter plot of the sum of medians against the ratio of medians, as shown
in Figure 1a. 

This particular scatter plot fails in two ways. First, any substance that is repressed has
a ratio between 0 and 1, whereas any substance that is induced has a ratio greater than
1. This means that the distribution of ratios on this scatter plot is very unequal: all
repressed genes are squeezed into the interval between 0 and 1, while the induced
genes range between 1 and infinity. It is very difficult to see what is happening to
features with ratios less than 1. 

The second failure is that a large number of substances are squeezed into the low-
intensity part of the scatter plot, and it is difficult to differentiate what is happening in
that part of the plot. 

If, however, we display the same scatter plot with log ratio data on the Y-axis, and
display sum of medians data on a log X-axis, the structure in the data is revealed
(Figure 1b). 

Note the advantages in this form of the scatter plot:

• On the Y-axis, the log ratio of data is displayed symmetrically about zero, 
so we can equally identify induced and repressed genes.

• On the X-axis, the sum of medians data plotted on a log axis gives 
prominence to the low intensity points in which we are interested.

Now that we have a scatter plot that we can use, we can discern at least three obvious
trends in this data.
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First, we see that a majority of points falls along the log ratio equals zero line. These
points correspond to substances with little or no differential expression.

Second, on the intensity axis, the structure around low-intensity features is more
obvious. There is a trend in the data towards negative ratios at low intensities. This
could mean that there is some systematic error in the array-production process. 

Third, we see two clouds of points with large negative log ratios that are separated
from the main distribution. These are two different populations of controls, which
explains their tight distributions.

22..22..22 HHiissttooggrraammss

We see similar differences if we do a histogram of the ratio data (Figure 2a).

A histogram of the ratio of medians (Figure 2a) is much less informative than a
histogram of the log ratio data (Figure 2b) over the same data range, for the reasons
mentioned above: when transformed into log ratios, ratios of less than 1 have a similar
distribution to ratios greater than 1. We look at histograms in more detail in the next
topic, Normalization.

The lesson for microarray data is simple: always use log ratio values (or plot ratio data
on a log axis) if you are interested in the distribution of ratios across an entire array.

33 NNoorrmmaalliizzaattiioonn

Normalization is the process of adjusting experimental data so that:

1. Data from a single experiment are as accurate as possible. For 
example, if we are using an instrument that adds a well-characterized 
offset to our data values, then we correct for this offset.

2. Data from different experiments can be compared to each other. For 
example, we may wish to correct for variations in sample preparation 
between experiments by forcing all data to fit a specified distribution.

In microarray experiments, this typically involves adjusting the data on a single array,
and then adjusting the data across arrays.

Normalization is also discussed in the Acuity printed manual.

3.1 Normalizing  data  on  a  single  array

33..11..11 LLiinneeaarr  NNoorrmmaalliizzaattiioonn

Data on a single microarray may need to be adjusted for a number of reasons. The
most common and most easily understood reason is to correct globally unbalanced
dye signals that can be caused, for example, by the scanner PMTs not being balanced.
We want the PMTs to be set so that a feature that has two fluroescent lables bound to
it with a 1:1 ratio actually produces a ratio of 1.0 when it is scanned. If the PMTs are
set so that this is not the case, then the ratio value of every feature on the microarray
will need to be adjusted. 

This sort of global imbalance is corrected in the following way. In many whole-
genome gene expression experiments we expect the mean of all ratio values to be
close to 1.0 because for any given experimental system relatively few genes are
differentially expressed. However if the microarray contains a small or functionally
specific set of genes, we may expect many of them to be differentially expressed. In
this case normalizing the data to force a ratio of 1.0 may mask important differential
expression. As stated in the first principle above, as the biologist you must consider
whether any calculation is appropriate for your experiment.

If the mean ratio is different from zero, then we can force it to be zero by adjusting
every feature by constant multipliers, using the following method:

• Calculate the mean of the ratio of every feature (let us say that it is 1.21).
• Take the square root of this number (= 1.1).
• Multiply all numerator wavelength values (e.g. F635 Median) by 

1/1.1 = 0.91.
• Multiply all denominator wavelength values (e.g. F532 Median) by 1.1.
• The new global ratio value is now 1.21 × (0.91/1.1) = 1.0.

0.91 and 1.1 are the normalization factors.

In Acuity, this sort of linear normalization is called Ratio-based normalization, and can
be performed in the Normalization Wizard by the click of a button. 

(Note that if you have already created datasets and analyzed data from a microarray,
you cannot normalize the microarray in this way. This is because the existing analysis
results rely on unnormalized data; if the data are normalized after the analyses, the
analyses would be invalid. Therefore, you should always normalize microarrays before
analyzing them. Typically, do it immediately after importing them.)

Outliers on a microarray can strongly skew the global mean ratio, so it is advisable to
normalize on the mean ratio of features with ratios between 0.1 and 10, as this will
better represent the global shift in ratios (Ratio-based normalization is also the
normalization method implemented in GenePix Pro). 

It is standard practice when analyzing microarrays to normalize them with ratio-based
normalization. 

A good way of understanding the effect of Ratio-based normalization on your
microarray is to plot a histogram of the log ratio data in the Normalization Viewer. As
you can see in Figure 3, the unnormalized distribution (Figure 3a) is symmetrical
about a vertical axis but not centered on zero. Applying a ratio-based normalization
shifts the distribution so that it is centered on zero (Figure 3b), but it does not change
the distribution’s shape, as every feature is shifted by the same factor.

33..11..22 NNoonn-lliinneeaarr  NNoorrmmaalliizzaattiioonn

It is important to understand exactly what ratio-based normalization can and cannot
do. The Ratio-based normalization described above is excellent when the histogram of
the log ratio is already symmetrical about a vertical axis, and it merely needs to be
centered on zero. However, this is not always the case with microarray data. It is
common to see histograms that are not symmetrical about a vertical axis, and such
distributions are not corrected by Ratio-based normalization, as in Figure 4.
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In Ratio-based normalization, because we assume that the global distribution of ratio
data on a microarray is symmetrical about zero (in log space), it should not be
surprising that we cannot correct the distribution. However, there can be effects on
microarrays that are intensity-dependent. It is common to see microarrays that have
unbalanced ratios in just one part of the intensity spectrum.

In the histogram in Figure 4a, the global mean ratio is very close to 1, because the
areas under the histogram on either side of the log ratio = 0 axis are equal. Ratio-
based normalization barely affects the histogram. As you can see, when it is
normalized the distribution is shifted very slightly to the right, but its shape does not
change. If we want to change the distribution so that it is symmetrical about zero, we
need to use a normalization method such as lowess normalization that separately
normalizes sub-intervals of intensity.

In Figure 5, we show the effects of lowess-normalization on the microarray from Figure
4 by using the Acuity Normalization Wizard. Lowess normalization uses the
assumption that log ratio data should be symmetrical about zero in any particular
intensity interval. It changes the shape of the histogram quite dramatically, as you can
see in Figure 5b. Not only is the distribution now symmetrical, but also the upper and
lower ranges have been tightened so that the overall dynamic range is smaller. 

Another way of displaying the effects of lowess normalization on a microarray is
through what is called an M vs A plot. 

On the X-axis we plot the A data type, which is a combined measure of intensity
defined by:

0.5log2(F635 Median × F532 Median)

You can think of A as being similar to a logged sum of medians.

On the Y-axis is the log ratio, known as M, hence the name M vs A.

In the unnormalized scatter plot at the top of Figure 6a, you can clearly see that at low
intensities (at the left-hand end of the X-axis), the log ratio values are skewed to the
negative, whereas at high intensities they are skewed to the positive.

In the lowess-normalized scatter plot (Figure 6b), the distribution is now symmetrical
about zero at all intensity values. (The small clouds of outliers at A = 6 and A = 10
are control spots that are supposed to have negative log ratio values.) At every
intensity interval, the data have been redistributed symmetrically about the M = 0
axis.

So graphically we can see what is being done to data when it is lowess normalized,
but what physical array effects are we correcting? There is no unequivocal answer to
this question.

As argued further in the Acuity printed manual, you should be conscious of exactly
what is being done to your data when you apply a lowess normalization, as the
distribution can be changed quite radically. In particular, we do not recommend that
you use lowess-normalized data unless you understand exactly why your data is
distributed in the way that it is, and hence why it can be validly lowess-normalized. 

Having said that, drawing M vs A plots and observing the effects of lowess
normalization is an excellent diagnostic tool. On good arrays you should not see ratios
vary strongly with intensity. If they do, there may be something systematically wrong
with your array-production process.

One point to keep in mind is that many of the features at the far left of the M vs A plot
that are most strongly shifted away from M = 0 are likely to be unreliable for other
reasons. The curved part of the distribution in Figure 4 occurs mainly for A values less
than 6, which might correspond to a sum of medians value between 100 and 200.
Removing all those features makes the distribution look a lot better, and hence it may
not be worth lowess normalizing at all.

3.2 Normalizing  data  across  arrays

Once each microarray in a dataset is normalized individually, you may want to
normalize them as a set, so that they share the same distribution, for example.

These sorts of transformations are described in the “Pre-Processing” section of the
“Clustering” topic.

44 DDaattaasseett  FFiilltteerriinngg  aanndd  MMaannaaggeemmeenntt

Datasets are the units of analysis in Acuity. Typically, a dataset consists of all the
reliable data from a set of microarrays that together form an experiment.

There are two main reasons why we might create a dataset from only a subset of the
available data, instead of from each feature from every microarray in an experiment:

1. We remove unreliable data from the dataset. For example, we remove data points
derived from slide defects such as smears.

2. We remove uninteresting data from the dataset. For example, we may have 
control features used for normalization that are not needed for downstream 
analysis; or, we remove substances that do not show any interesting behavior in 
order to make the analysis task more tractable. 

Removing unreliable data is one of the more treacherous tasks facing the microarray
researcher, due to the subjective nature of what counts as “good” data, the variability
in data quality across microarrays, the lack of accepted standards for good data, and
the problem of translating image-based defects into numerical conditions on array
data types. 
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Removing uninteresting data can be more or less controversial depending on what you
regard as “uninteresting”. That control spots are not required for downstream advanced
analysis may seem self-evident, but it is a questionable assumption, as control spots
by their nature should cluster together and so can be used to validate advanced
analyses. Other dataset filters that claim to remove uninteresting data points, such as
fold-change filters, may excise potentially important data points along with the
uninteresting data, so they should be used with caution (more about this in section
4.4.2 and section 6). 

4.1 Measures  of  feature  quality

One of the challenges to both novices and experts in microarray analysis is how to
translate the quality judgements that we make confidently by eye when looking at
microarray images, into a formalism that can be applied reproducibly on a large
number of microarrays.

The easiest way to do this, and it is relatively easy, is to make a list of common feature
and slide defects, and then translate them into numerical conditions on GenePix Pro
and Acuity data types. Note that all these conditions should be applied to microarrays
that have already been normalized.

Here is a non-exhaustive list of common defects, in no particular order:

1. Feature is smeared into a neighboring feature;
2. Feature is very close to background;
3. Feature has a hair or a scratch through it;
4. Feature is in pieces;
5. Feature is saturated;
6. Feature pixels have highly non-uniform intensities;
7. Feature has a highly non-uniform background.

Notice that each of these defects is evaluated for each feature individually.

Condition  1 almost always results in a feature being Not Found by the GenePix Pro
spot-finding algorithm, so we should exclude Not Found flagged features, as well as
Bad and Empty features:

Flags >= 0

This defect also leads to a high background, which is identified by other conditions.

Condition  2 can be quantified in a number of different ways. One very powerful way is
to demand that the signal-to-noise ratio is above the detection limit of three in both
channels:

SNR 635 > 3 AND SNR 532 > 3

Alternatively, if you know the median background level on your slides, you can create
a condition based on the absolute intensity in each feature:

Sum of Medians (635/532) > 200

You can change the value of 200 to suit the background level on your arrays.

A third alternative is to place a condition on the percentage of pixels two standard
deviations above background:

% > B635+2SD > 55 AND % > B532+2SD > 55

Again, the value 55 can be adjusted to suit your arrays.

Conditions  3  and  4 can be formalized by using the Circularity metric introduced in
GenePix Pro 5.0 (assuming that you have used non-circular feature-indicators):

Circularity > 80

Condition  5 is relatively simple to quantify:

F635 % Sat. < 2 AND F532 % Sat. < 2

Conditions  6  and  7 can also be quantified in a number of ways. For the background
intensity one can place a condition on the coefficient of variation of the local
background in each channel:

B635 CV < 25 AND B532 CV < 25

The coefficient of variation is not entirely reliable as a measure of uniformity, because
when the mean is small, the CV can be large even for a uniform pixel distribution. 

We could do the same for the feature intensities, but for instructional purposes let us
use a condition on the Rgn R2 value, which measures the uniformity of pixel
intensities in the region of the feature: 

Rgn R2 > 0.6

With all these conditions in place, all we need to do is concatenate them with AND
operators, and enter them into the Query Wizard. The end result of a query from the
Query Wizard is an Acuity dataset.

Note that many of the thresholds in the above conditions are arbitrary. Whether you set
a threshold of 25 or 30 for background CV, for example, is entirely up to you.

From long experience working with microarrays of many different types, we have found
that the single most powerful measure of feature quality is the Rgn R2. Many labs use
it, and depending on the quality of their arrays they set the threshold lower or higher:
some use 0.5 or 0.4, while others use 0.7 or 0.75.

4.2 Measures  of  substance  quality

It is worth emphasizing that each of the quality control conditions formulated above is
evaluated for individual spots on single slides. The dataset may be created from
hundreds of microarrays in a single experiment, but the quality control conditions are
evaluated spot by spot.

The next level of filtering that we can apply is to evaluate data quality by comparing
the value of replicate features on the same microarray, or on replicate microarrays.
This is termed “substance” data quality, because in Acuity we average replicate
features on each microarray to produce a representative value for each substance on
the array.

44..22..11 RReepplliiccaattiioonn

Replication is the key to truly accurate data in any scientific experiment. When it
comes to microarrays, scientists sometimes get confused about replication: what
counts as replication, and how much is required. The rules for microarrays are no
different than the rules for any other experimental technique:

• The only way to be truly confident in the results of any experiment is to perform 
the entire experiment a number of times.

• When repeating an experiment, vary apparently unrelated conditions as much as 
possible, such as reagents, slide types, and equipment such as hybridization 
chambers.

• In a single experiment it is always better to replicate across microarrays than 
within microarrays, because there is more chance of noticing array-specific 
biases across microarrays. 

Whether you replicate within or across microarrays, it is only through replication that
you can assess the variability in your data.

44..22..22 RReepplliiccaattee  ffeeaattuurreess  oonn  mmiiccrrooaarrrraayyss

To assess the quality of replicate features on a single microarray or replicate
microarrays, you can use Acuity to calculate statistics such as standard deviations and
coefficients of variation on replicate features.

Two replicates is the minimum number from which we can obtain any information at
all; if the ratio values disagree, we can examine them on the image on the Features tab
to see if both spots are reliable. 
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With three replicates, there will be cases where one is inconsistent, and therefore we
can remove one of the features from downstream analysis. In the case above, we can
with a reasonable amount of confidence say that there is an outlier.

As noted above when using CV to measure the uniformity of background intensity, CV
is not reliable when the mean is small. It consequently not reliable on log ratio data,
where most means are close to zero.

4.3 Replicate  microarrays

Many researchers do replicate microarrays during assay development, or of crucial
time points (e.g. time-point zero) to ensure that they have a reliable reference sample.
Here we present a simple but powerful example of assessing the quality of three or
more replicate microarrays using Self-Organizing Maps (SOMs):

The SOM in Figure 7 is of three replicate ratio-normalized microarrays from the time-
point zero of a large-scale experiment, where each microarray has around 6800
features. Each square in the SOM is a cluster of substances and the trace is the
average profile of all substances in the cluster. The colors in each cluster are
miniatures of the colors assigned to each substance profile.

On ideal microarrays, we would expect the values for each substance to be the same
on every microarray, and hence we would expect each cluster to be a single color.
Because microarray data can be noisy, on good-quality arrays we nevertheless expect
a small amount of variation from array to array.

In the example above, we have a number of clusters with substances behaving as
expected on good arrays, but other clusters, such as three of the four along the
bottom, where the values are highly variable from one array to another. We can create
a new dataset that excludes these clusters. Once this is done, we can run the SOM
again.

This is a slightly cleaner dataset, but there is still a large amount of variability across
the three microarrays.

We expect every cluster to have a single color, because the ratio values should be the
same on each microarray. In log space, we can formalize this condition by saying that
we want each substance to have the same sign log ratio across the three microarrays.

This dataset (see Figure 8) contains around 5200 of the original 6800 substances, so
we have removed around 25 per cent of the original data. However, we now have a
dataset of replicate arrays where the replicates are all relatively close in value. The data
filtering is not complete, but it has advanced a long way very quickly.

The great advantage of using a SOM is that it provides a very graphic method of
quickly evaluating the quality of replicate arrays. The fact that clusters should be all
red or all green when clustering replicate arrays means that a visual inspection method
can be powerful. We can see this in another example. 

In the following SOM we have clustered four replicate arrays, where the second two
arrays are dye swaps of the first two arrays:

The top left and bottom right clusters contain data that we expect to see in a replicate
dye swap experiment, as the dye swaps are obvious from the first two to the second
two arrays. In many other clusters, however, there is a disturbing inconsistency in the
data. One can see this immediately from the SOM without doing any sophisticated
statistical analysis.

See below for more on managing replicate microarrays.

4.4 Conditions  across  microarrays

The method described above as part of the Self-Organizing Maps technique of finding
replicate substances with the same sign is a special case of filtering data by imposing
conditions across more than one microarray. Once you have a dataset consisting
entirely of good-quality features, you may wish to filter it further by imposing
conditions based on substance behavior across all the arrays in the experiment.

44..44..11 MMiissssiinngg  vvaalluueess

Having applied spot quality control criteria in the Query Wizard (described in 4.1) you
may find that many substances in the dataset have missing values. That is, the
substance is in the dataset because features from some microarrays passed the query
criteria, but on other microarrays the features failed the criteria and hence are missing.
Wherever a failure occurred, the cell in the main data pane in Acuity reports “<no
data>.”

Where a substance has a large number of missing values in a dataset, any clustering
results containing that substance will have little meaning, so it makes sense to remove
those substances before any downstream analysis.

Alternatively, if you want to eke as much out of your arrays as possible, you can leave
missing values in a dataset. Hierarchical clustering is relatively robust with datasets
containing missing values, and the other clustering algorithms have internal methods
for dealing with missing values that you can specify in the cluster configuration dialog
boxes.
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In Acuity, you can always retrieve missing values from the database with the Fill Empty
Cells command.

44..44..22 FFoolldd-cchhaannggee  ccoonnddiittiioonnss

When working with very large datasets, it is common to reduce the size of the dataset
by removing substances that do not show some specified change in expression on
some number of microarrays. This is called a fold-change filter. It is typically done for
a number of reasons:

• Datasets with a very large number of substances take longer to analyze, and 
are awkward to manage.

• Many substances do not change expression in an experiment. It is assumed 
that if a substance does not show some minimal change in expression, 
then it is not going to be of biological interest. 

For example, in a dataset consisting of ten microarrays, you may want to look at those
substances with ratios greater than 2 or less than 0.5 on at least 2 microarrays. If
using log ratio data, we can find all those substances with an absolute value greater
than 1 on at least 2 microarrays. These two conditions are similar but not equivalent:
the first finds substances that are up on two arrays or down on two arrays, whereas the
second finds substances that are up on two, down on two, or up on one and down on
one. 

Use fold-change filters with care. The substances showing the largest changes in
expression are not always those that are most biologically significant. 

Further, one of the great strengths of microarrays is that we can do whole-genome
experiments. A fold-change filter immediately introduces a bias to the analysis: it
eliminates substances that do not pass an arbitrary fold-change cutoff. If we do not
analyze all the data that we have, then we are not using microarrays to their full
potential.

See Advanced Dataset Analysis for more on data filters.

4.5 Managing  replicate  microarrays

Once you have a dataset that has been filtered and cleaned of unreliable data points,
you need to decide how to manage replicate microarrays in downstream analyses such
as clustering. You have two choices:

1. Keep each microarray as a separate entity. This has the advantage allowing you 
to observe the differences among replicates. If the replicate arrays do not cluster 
together, for example, then you know that the variation among supposedly 
identical arrays is greater than the variation among different samples, and 
therefore that you may need to do your experiment again, or re-design it.

2. Combine each set of replicate arrays, for example by averaging. This has the 
advantage of smoothing out the variation in measurements on individual arrays, 
and providing a representative measure of expression across multiple arrays.

55 CClluusstteerriinngg

5.1 Preconceptions

Biologists who are new to microarray analysis and data mining often share a number of
preconceptions about clustering. Before we can discuss clustering in any detail, we
need to explode these preconceptions.

Preconception  1:  Once  I  have  clustered  my  data,  my  experiment  is  finished

Clustering is not the end of your experiment. Clustering is an exploratory technique
that you can use to investigate your data in many different ways, depending on the
questions in which you are interested. If your data is at all good, clustering will raise
more questions than it answers.

Before you come to clustering, you follow a relatively linear path in Acuity: import
data, normalize, and filter datasets. Once you get to the point of clustering your data,
the simple linear path stops. At the end of the path is a playground. There is no single
way to use a playground. You just go ahead and play on it.

Clustering will answer simple questions, but it will raise more, many of them without
simple answers.

Replace  preconception  1  with: clustering will answer some questions, and raise many
more. I must be prepared to spend a lot of time exploring my data.

Preconception  2:  Before  I  can  use  clustering  I  need  to  know  the  best  method  to  use  on
my  data

There is no one clustering method that is best suited to your data. Software like Acuity
provides many different methods of analysis because different methods provide
different perspectives on your data. 

Try them all. Experiment. Over time you will find that some methods are more
informative than others, and you will use those.

Robust clusters in your data will be found by any clustering method. If quite different
clustering methods produce different results, then perhaps the data do not fall into
very strong groups.

Replace  preconception  2  with: There is no best clustering method; there are only more
informative and less informative methods.

Preconception  3:  Clustering  will  find  the  real  structure  in  my  data

Clustering will find structure in your dataset. Given a dataset consisting of randomly
generated microarray-like data, clustering will find structure. That is what clustering
does. It does not mean that the structure has any basis in reality. 

One way that graphically demonstrates this point is simply to analyze a random
dataset. We generated a dataset consisting of 10 microarrays of 5000 substances
each, and ran a Gap Statistic analysis, which estimates the optimal number of clusters
to find in a dataset.

The Gap Statistic analysis suggested two clusters, so we performed a 1 × 2 SOM.
The result, shown in Figure 10, demonstrates that there are indeed two clusters in the
data: there is a clear partition based on the value on the third microarray. 

What does this tell us? 

First, we must be able to determine if the structure found by a clustering algorithm is
more than what we would expect in random data.

Second, and more generally, the results of clustering need interpretation just as the
results of any mathematical operation need interpretation. Even if the structure that the

Guide to Microarray Analysis • Application Note 7

FFiigguurree  1100



algorithm finds were more than one would expect from random data, one still must
determine if it is biologically relevant.

Being a trained biologist, you must look critically at the results of clustering
operations and decide if they are artifacts of sample preparation methods, for example,
or if they represent true biological variation.

Replace  preconception  3  with: Only the intelligence of a trained scientist can decide if
the structure found by the clustering algorithm is biologically relevant and informative,
or if it is an artifact of the experimental design, or the algorithm.

5.2 A  classification  of  clustering  methods

There are basically two classes of clustering methods in Acuity:

Hierarchical: every substance is related in a hierarchy to every other substance.

Non-hhierarchical (K-Means, K-Medians, Self-Organizing Maps, Gene Shaving):
substances are put in clusters, but the clusters have little or no relationship with each
other.

(Principal Components Analysis (PCA) is organized under the Clustering menu in
Acuity, but it is not really a form of clustering; more of it later.)

While this is a well-founded division of the clustering methods, it is not immediately
informative. We have to tease out the implications of the division in order to see its
consequences.

First, a major difference between the methods as organized in this way is how they are
visualized. Hierarchical clustering requires a hierarchical visualization, and one way of
doing this is with the familiar dendrogram. By contrast, when visualizing non-
hierarchical clusters, each cluster can be displayed separately. 

This is not a trivial difference. Visualizations are an extremely powerful method of
displaying a large amount of data all at once in a way that is intelligible. Think of it
this way: the output of a clustering algorithm is merely a table of numbers reporting
the similarity of substances to each other. If Acuity only reported tables of numbers as
outputs of the clustering algorithms, it would be useless. The power of a program like
Acuity is in the way it makes analyzed data immediately interpretable, and it does that
through its visualizations.

Through their different visualizations, the two classes of clustering methods will make
you think about your data differently, so when analyzing a dataset it is always
worthwhile doing at least one of each class.

Second, the methods differ in the inputs that they require, which also has
consequences for how you think about your data. The main difference in this regard is
that hierarchical clustering clusters the whole dataset as one cluster with internal
structure, while the non-hierarchical methods require that you specify the number of
clusters to find.

The requirement that you specify the number of clusters to find before you have
clustered your data can cause confusion for newcomers to microarray analysis. (It is
also the reason why Acuity includes the Gap Statistic algorithm, which provides an
estimate of the optimum number of clusters in your data when using K-Means, K-
Medians, or Self-Organizing Maps.) The confusion arises as a consequence of
Preconceptions 2 and 3 above, that the point of clustering is to find the real structure
in your data, and that there is a best method. Hierarchical clustering supports these
preconceptions, because it seems to present a single unambiguous segmentation of
your data. 

The fact that non-hierarchical methods are entirely agnostic about the number of
clusters in the data should help to dispel the preconceptions, but it should also make
you look at hierarchical clustering differently. Hierarchical clustering is just as arbitrary
as non-hierarchical clustering (as one must specify a similarity metric and a linkage
method, for example), but it appears to be less arbitrary, because once the inputs are
specified it provides a single segmentation of the data.

5.3 Pre-pprocessing

Apart from the explicit normalization methods that transform your microarray data and
whose results you can view in the Acuity interface, the Acuity clustering algorithms
have a number of internal transformations that can be applied to data before it is
clustered.

55..33..11 RRooww  CCeenntteerriinngg

Row centering subtracts the row mean from each row. This transformation makes
sense when we are interested in the shape of a response, and not its absolute value. 

In Figure 11, we show the behavior of substances over time or across samples: when
the profiles are mean centered, the algorithm ignores the absolute values and
compares their profiles only.

Whether or not you use row centering will depend on whether or not you think the
substances represented by the red and the blue traces above should be grouped
together. 

When we cluster the same dataset with and without centering, we see less diversity in
the result that is row centered, because row centering removes a large amount of
variation from a dataset. The simplest way to verify this for yourself is to run a Gap
Statistic analysis without row centering, and then with row centering. You will find that
the Gap Statistic without row centering predicts a larger number of clusters than the
Gap Statistic with row centering. Further, the gap values for each cluster solution
within each Gap Statistic analysis show more variation for the uncentered data than the
centered data.

55..33..22 RRooww  SSccaalliinngg

Row scaling scales all rows so that they have the same range of expression (the same
variance). This transformation makes sense when we are interested in the shape of a
response, and not its magnitude. That is, once rows are scaled, substances are
clustered together based on their expression profiles but independently of how strong
their responses are.

In Figure 12, we show the behavior of substances over time or across samples: when
the profiles are mean scaled, the algorithm ignores the absolute values and compares
their profiles only.
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Whether or not you use row scaling will depend on whether or not you think the
substances represented by the red traces above should be grouped together.

As with row centering, row scaling reduces the amount of variation in a dataset, which
are reflected in the results of Gap Statistic analyses with and without row scaling.

55..33..33 AArrrraayy  SSccaalliinngg

Array scaling scales the variance of each array in a dataset so that they have the same
range of expression. This transformation makes sense when we are comparing arrays
from different samples that have very different expression levels, such as tissue types,
but we want the contributions from each array to be equal. That is, it is a way of
transforming all arrays so that they have a common data range.

5.4 Hierarchical  clustering

Hierarchical clustering consists of two separate mathematical operations:

• A similarity metric, which determines the similarity of each substance to 
every other substance.

• A linkage method, which is used to order the substances and construct the 
branches of the dendrogram.

When performing hierarchical clustering, you can choose to cluster substances, or
microarrays, or both. You cluster microarrays when they do not already have some
intrinsic order (as they do in a time course, when they are ordered by time, or some
other variable dependent on time). However, it can also be instructive to cluster
microarrays in a time-course experiment to see if in fact the time course is reproduced
by the clustering algorithm. If it is not, then the data may not be very representative of
the time course (perhaps because the sampling intervals are too far apart). 

We can understand the output of the hierarchical clustering algorithm by examining
how it is represented by its visualization (Figure 13a).

The most obvious thing you notice about the visualization is that there are two parts to
it: a color table, and a dendrogram. The dendrogram is the part that is actually
produced by the algorithm; the color table is an aid to analysis, but is merely the color
profile of each substance as ordered by the algorithm. 

The second thing to notice is the correlation scale at the bottom of the dendrogram.
The algorithm calculates correlation coefficients, where 1 is perfectly correlated, -1 is
perfectly anticorrelated, and 0 is uncorrelated (if you use a distance metric such as
Euclidean distance instead of a correlation coefficient, the distances are transformed
and scaled to the range –1, 1).

55..44..11 MMeettrriiccss

Acuity includes a large number of similarity metrics, which are formally described in
the printed manual.

The large majority of published microarray experiments that report hierarchical
clustering results have used the Pearson Correlation as the similarity metric. Spearman
and Kendall are very similar to Pearson, except that they operate on rank orderings,
and so are less sensitive to outliers than the Pearson correlation. 

The binary matching metrics are unsuitable for gene expression data where one has
continuously varying expression levels, or any other dataset with continuous values.
They are appropriate for experiments such as Comparative Genomic Hybridization,
where one is looking for the presence or absence of some property.

55..44..22 LLiinnkkaaggee

The different linkage methods typically produce orderings of substances that are very
similar, which is shown by comparing color tables derived from the different methods,
but they produce very different trees. Given similar color tables (i.e. substance
orderings) but different trees (i.e. different ways of joining branches), and in the
absence of experiments to determine if any one linkage method better reconstructs the
real structure in a dataset than any other, the primary criterion for choosing a linkage

method should be the intelligibility of the tree that it produces. Is it easy to identify
clusters? Is the relationship among clusters easy to discern?

The differences among the three linkage methods can be demonstrated by clustering
the same dataset with each of the three methods in Acuity (Figure 13a).

From this example, which is in no way contrived or atypical, one notices two things: 

• On the gross scale, the color tables are very similar.
• It is relatively straightforward to rank the methods in order of decreasing 

intelligibility: Complete, Average, Single.

The differences between the methods are even more striking if we look at three trees
generated on a different dataset. In the following case, we have a dataset consisting of
31 substances and 39 microarrays, where the microarrays fall into two distinct
classes. Both substances and arrays were clustered, but for simplicity we show only
the array tree (Figure 13b).

As in the first example, the color maps are basically identical. However, there is again
an obvious difference in intelligibility among the three methods, which is the same as
we came to in the first example: Complete, Average, Single. In the dendrogram
constructed by Complete linkage, the clusters have an appropriate amount of nesting,
and an appropriate amount of separation. When using Average and especially Single
linkage, the clusters are so tightly nested that it is difficult to make any sense of their
internal structure and their relationships to each other.

Having said all that, the data may be better represented by a single-linkage tree than
by a complete linkage tree. However, in science one should always begin with the
simplest explanation, and complete linkage provides by far the simplest structure of
the three methods.
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55..44..33 BBrraanncchh  OOrrddeerriinngg

Before we can go further, we need to define some terms used to describe the
dendrogram (which is a mixture of the arboreal and the genealogical):

• The objects that are clustered are leaves. 
• A cluster containing at least two objects but not all of them is a branch. 
• A branch-point on a tree is a node. The nodes beneath a node are its 

children; the nodes above a node are its parents.

The position of a node in the tree represents the similarity between its two child
nodes. The output of the algorithm, however, leaves one part of the representation
unspecified: which way to order the child nodes beneath a node. For example,
consider the following four dendrograms: 

Looking at the first dendrogram, we can say that the node (A,B) is similar to the node
(C,D). However, between the nodes, we do not know whether A is more similar to C,
or to D, and the algorithm does not tell us this. Therefore, each of the four branches
above is an equivalent representation to the clustering solution provided by the
algorithm. 

In a large dataset, this underdetermination of branch ordering can have a substantial
effect on the appearance of a tree, and hence of the intelligibility of the solution. For
this reason, Acuity includes a number of methods of automatically swapping branches
so that they match as closely as possible some other ordering, such as the ordering
provided by a SOM or a PCA. 

5.5 Non-hhierarchical  clustering

As we saw in Dataset Filtering and Management, the non-hierarchical clustering
visualization in Acuity is an extremely effective method of summarizing the main
expression signals in a dataset. For completeness, let’s describe what we see in such
a visualization:

This is a visualization of a Self-Organizing Map analysis, consisting of nine clusters.
The title bar of each cluster reports the number of substances in each cluster, and
each title bar is colored on a grayscale from black to white, depending on the relative
number of substances in each cluster.

The cluster with the pink square around it has been selected, which means that the
187 substances in it are selected everywhere else in the Acuity interface.

The trace drawn on each cluster shows the average profile of all the substances in the
cluster.

The colors in each cluster are formed from the values of each substance on each
microarray. 

Because this is a Self-Organizing Map visualization, the clusters are arranged by
similarity on the 3 × 3 grid. That is, similar clusters are together, and clusters
diagonally opposite have opposite average profiles.

But while the visualization is the same for all four algorithms—K-Means, K-Medians,
Self-Organizing Maps, Gene Shaving—the outputs of each of the algorithms are
different. In order to interpret the visualizations, therefore, we need to know a little
more about each of the algorithms.

Each of these clustering methods shares the same pre-processing options, including
the choice of using an automatically generated or a fixed random seed. The default
setting uses an automatically generated random seed. With this option, if you run the
same analysis twice in a row, you will obtain a slightly different result, usually
manifested by the cluster memberships being slightly different. That is, you will see
roughly the same clusters created, but there will be slightly different numbers of
substances in each cluster.

This variation in cluster membership across repeated analyses can be a little
disturbing, especially if you are still harboring under Preconception 3. You may think
that this is yet another layer of arbitrariness that is imposed during the analysis that
you do not need. But consider the alternative: would you be any more confident in a
cluster result if you always used the same seed, instead of an automatically generated
seed? It is still a random seed. Furthermore, you still have the arbitrariness of
choosing one among many distance metrics.

We think it is much healthier to embrace the small variations in cluster membership
and look at clustering in a slightly more sophisticated manner. It is not unusual to find
substances that belong only marginally to a cluster, and that change membership as
the initial conditions are varied among repetitions of the analysis. This can mean a
number of things:

• You have chosen the wrong number of clusters to find in the dataset, so 
that similar substances are forced into different clusters, and then move 
among these similar clusters among solutions.

• There may be no clear separation of substances into clusters in your 
dataset (this is unusual in a gene expression experiment).

In the Self-Organizing Map visualization above, you can see from their profiles that the
first two clusters are very similar, as are the first two on the bottom row. It would be
entirely expected that if we ran this analysis a second time, the overall solution would
be similar (i.e. the profiles found would be similar) but that cluster membership would
change a little among the two sets of similar clusters. This is clearly a case of
partitioning the dataset into more clusters than are supported by the data. 

55..55..11 GGaapp  SSttaattiissttiicc

In non-hierarchical clustering we tell the algorithm how many clusters to find in a
dataset. You may protest, and with good reason: what is the point of having a
clustering algorithm if I have to tell it how many clusters to find? 

While we have focused quite strongly on the arbitrariness in clustering in order to
counter the various preconceptions about it, it is possible to go too far in the other
direction. That is, we should not deny that many datasets have a large amount of
intrinsic structure, and that clustering should be able to find it. 

Consider the dendrogram in Figure 16. At the grossest level, we can see that the
dataset can be divided into two main clusters: one at the top that is predominantly
green, and one at the bottom that is predominantly red. This division is reflected in the
tree, which divides into two main branches. At any particular correlation value you can
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draw a vertical line through the tree, and the number of branches that it crosses is the
number of clusters that the dataset is partitioned into at that value. The dendrogram
does not tell us how many clusters are in the data: we just have various numbers of
clusters with various degrees of similarity.

The problem we are facing here is one of granularity: at one level, there are obviously
two clusters, but if we look more closely we can divide those two clusters further. we
move down the tree, we see that three clusters, five clusters and nine clusters are
relatively stable partitions (Figure 17). 

Which is the best solution? There are objective ways of answering this question, where
one measures the within-cluster dispersions, such as the Gap Statistic. To some
extent, the quality of a solution depends on how well it matches your interests. If
you’re only interested in the gross structure, then two clusters is a good answer. If
you’re interested in the fine detail, you might want to see more clusters.

Going back to our SOM example above, this seems to be a case where 9 clusters is
not the best partition: on the gross scale, two clusters is better, while if you’re
interested in a finer partition, five appears to be a stable partition. 

The Gap Statistic is one method of estimating the optimal number of clusters in a
dataset. It consists of two parts:

• a metric for estimating the goodness of a partition of a certain size
(the Gap value);

• a rule for determining the best Gap value. 

When you perform a Gap Statistic calculation, you specify the range of clusters to test;
for example, you compute a Gap value for every cluster solution between 2 clusters
and 20 clusters. The Gap value chosen to be the best is not necessarily the one with
the largest Gap value; it is the first local maximum. For more details, see the printed
manual. 

55..55..22 KK-MMeeaannss  aanndd  KK-MMeeddiiaannss

Having described the general strategies of non-hierarchical clustering above, there is
very little more to say about K-Means and K-Medians clustering except that they are
the fastest non-hierarchical methods in Acuity. The algorithms are similar to the Self-
Organizing Maps algorithm, without the clusters being constrained on a 2-dimensional
lattice. Consequently, the clusters are arranged in random order on the visualization.
When creating solutions with large numbers of clusters, K-Means and K-Medians can
be difficult to interpret. On the other hand, they are very effective for analyzing large
datasets into small numbers of clusters.

55..55..33 SSeellff-OOrrggaanniizziinngg  MMaappss

Like K-Means and K-Medians, the Self-Organizing Maps algorithm uses a similarity
metric to group substances into clusters. Unlike the K-cluster methods, the Self-
Organizing Maps algorithm arranges clusters on a two-dimensional grid, generated by
two unobserved latent variables. This makes the visualization much more informative
than in the case of the K-cluster methods, especially when one finds a large number of
clusters.

55..55..44 GGeennee  SShhaavviinngg

Unlike K-Means, K-Medians and Self-Organizing Maps, the Gene Shaving algorithm
uses Principal Components Analysis and the Gap Statistic to generate its clusters.
Because of this and other fundamental differences in clustering methodology, it has
the following differences as well:

• It cannot find more clusters than there are microarrays in the dataset.
• Its clusters are not mutually exclusive: a substance can be in more than 

one cluster.
• Substances with opposite signs are clustered together. That is, a substance 

showing linear increase along the arrays is likely to be clustered with a 
substance showing linear decrease along the arrays.

For these reasons, it is often worth doing a Gene Shaving analysis of a dataset in
addition to one of the other non-hierarchical methods. It can produce some very
interesting results.

5.6 Principal  components  analysis

Of all the advanced analysis methods in Acuity, Principal Components Analysis (PCA)
causes the most confusion. While the confusion may arise from a number of different
sources, it is often caused by the following:

• Cluster  confusion. Strictly, PCA is not a clustering method. It is a data 
reduction method.

• Visualization  vagueness. Novices find the PCA visualization difficult to 
interpret.

Let us begin by dispelling these sources of confusion.

55..66..11 PPCCAA  iiss  nnoott  cclluusstteerriinngg

Suppose we have a dataset consisting of 1000 substances and their values on 10
microarrays. 

If we do a cluster analysis of this dataset, we divide the substances into groups
(clusters), but we still have 10,000 data points.

If we do a PCA and specify, say, to find 3 principal components, we end up with 1,000
substances and their scores on 3 principal components. We have 3,000 data points,
which is less information than when we started. That is why PCA is known as a data
reduction method.

After a PCA, we could save the PCA analysis result as a new, reduced dataset and then
go on to cluster that. In some types of data mining where datasets are very large, that
is indeed what happens. At present most microarray datasets are not that big, and
reducing a dataset by PCA to then cluster it has been shown to be no more effective
than clustering the raw data.
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What we do instead is plot the substances on the components and use that
visualization to explore the data. At this stage, we do treat PCA like clustering, as we
look for clusters in the data as represented in the PCA space.

55..66..22 VViissuuaalliizzaattiioonn  vvaagguueenneessss

The PCA visualization is very different to the cluster visualizations, a fact that can
compound confusion about PCA. However, it is really not very complicated.

Consider the example we described above: the result of the PCA analysis is a table of
data with dimensions 1000 substances × 3 component scores. Thus every substance
can be plotted in the 3D space of the Acuity PCA visualization. 

If you perform a different PCA analysis and find, for example, 5 principal components,
then the result is a table of 1000 substances × 5 component scores, and the Acuity
visualization gives you the option of choosing which 3 components to plot.

55..66..33 SSoo  wwhhaatt  ddooeess  iitt  aallll  mmeeaann??

If you open a PCA analysis result you might get something that looks like Figure 18.

If you select Properties from the right-mouse menu, you will see something like Figure
19.

This dialog box reports the details of the PCA result, but is also used to display
component loadings (more about this below) and to configure the main 3D display.

One of the aspects of PCA that we have not yet discussed is how the components are
chosen, and how they are related to each other. There are two things you should know
about the components:

• As you can see from the table in Figure 19, the components are chosen 
based on how much variance they can explain in the sample; as you go 
down the list of components, they explain less and less variance.

• Each component is independent of the previous component.

What do these two points mean in practice? This analysis result has six components.
The first component explains over 62% of the variance in the sample. If you look at the

component loadings graph on the right of Figure 19, you can say that substances
matching this profile contribute to 62% of the variance in the sample. Because this is
the first component, and so substances with high values on this component are
plotted at the far right of the X-axis on the main PCA display, if you select those
substances on the PCA display and then look at their profiles on the Graph tab, you
will see something like Figure 20.

You can see that these profiles are indeed similar to the component loadings graph of
principal component 1, and that they do show large changes over the time course in
this experiment.

You can think of the component loadings graph for each component as the profile of a
‘supergene’ that is controlling the experiment. In this experiment, for example, with
only 6 principal components we can explain 100% of the variance in the sample. That
means that we can reduce the complexity of this experiment to 6 basic expression
profiles, which look like the graphs of the loadings of the 6 principal components. 

The profile of each real substance in the experiment can be thought of as some
combination of the profiles of the supergenes. If a substance has a profile very much
like the loading graph of component 1, it will be plotted close to the X-axis on the
main PCA display, with only small contributions on the Y-axis or Z-axis.

Describing PCA in this way, it is actually a little bit like clustering, only it is grouping
substances according to how closely they match certain ideal profiles that explain the
most variance in the sample.

55..66..44 PPlloottttiinngg  mmiiccrrooaarrrraayyss

For one important class of microarray experiments, such as those represented by
cancer studies, we are interested in similarity among microarrays as well as similarity
among substances. In the screenshot of the PCA visualization in Figure 18, we have
plotted substance component scores. We could equally plot microarrays, although in a
time course experiment that tends not to be very informative.

In studies where we are attempting to find similarities among microarrays, plotting
microarrays is very informative.

The PCA visualization in Figure 21 is from an experiment where each microarray is
from a different cancer cell line. Cell lines of specific types are colored similarly
(based on the colors of dataset quicklists): red, leukaemia; green, colon; pink, breast;
light blue, lung; orange, ovarian; yellow, renal; grey, CNS; brown, melanoma.

The first thing you notice is that some cell lines cluster together very strongly, such as
leukemia and colon, while others are spread out. This means that some cell lines must
be distinguished by the expression of a certain small number of substances with
similar profiles, while others are characterized by substances having a variety of
expression profiles. 
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Of the cell lines in this experiment, only the breast cancers occur in all four quadrants
of the PCA, meaning that substances with diverse profiles are contributing to them.
Even those samples not as tightly grouped as leukemia and colon are nevertheless
confined to one or two quadrants: renal, CNS and melanoma are all at the top, for
example. On a dendrogram from this dataset (not shown here) these three groups of
cell lines all fall under one main branch, while colon, leukemia and breast are on
another.

55..66..55 UUssiinngg  PPCCAA  aass  aa  pprreeccuurrssoorr  ttoo  cclluusstteerriinngg

At the beginning of this section we formulated Preconception 3 (“clustering will find
the real structure in my dataset”) and showed how clustering finds structure even in
random data. PCA is not as easily fooled by random data as clustering. Figure 22
shows the variance calculations from a PCA of biological data (left) and random data
(right).

There are two main differences between the biological data and random data. The first
is that the variance explained by the first component of the biological data is very
much greater than its counterpart from the random dataset. The second is that in the
random dataset all the components explain roughly the same amount of variance.

In a random dataset, one expects that each component explains the same percentage
of variance, and that this is equal to 100/(number of microarrays). In this case where
we have a random dataset consisting of 10 microarrays, we would expect that each
component would explain around 10% of the variance, and this is exactly what we see.
In the biological dataset of 7 arrays, we see that the first component explains a great
deal more variance than one would expect from random data (whether it is relevant
biological structure or not is another question). Furthermore, the second component
explains a very large proportion of the remaining variance in the dataset (38%) so it is
also significant.

The deviation from random is very easily seen in the PCA visualization: random data
produces a symmetric, randomly-distributed cloud of points, while a biological dataset
tends to be asymmetrical. (Note that if you center and scale rows before the PCA, the
result will have some spherical symmetry, although you will still be able to discern
structure in biological data).

It is very unusual for a biological dataset not to show significantly more variation than
random. However, principal components analysis is an essential tool that you can use
to reassure yourself that the variation you are seeing is significant.

66 SSttaattiissttiiccaall  AAnnaallyyssiiss

In the Dataset Filtering and Management topic we saw some simple methods of
filtering datasets based on, for example, fold-change conditions. However, as pointed
out in that section, a fold-change filter is a blunt instrument: it can remove substances
from your dataset a little too indiscriminately. There are more sophisticated and
statistically rigorous ways of finding the differentially expressed genes in a dataset
than simply looking at those with the biggest fold changes.

6.1 Significance  Statistics

Acuity offers some statistical methods for identifying the genes that change most
significantly in an experiment. While they are relatively straightforward, they are also
very effective when applied to microarray data. However, in order to use them
intelligently, one must understand exactly what they are measuring, and what one can
infer from them.

66..11..11 TTwwoo-SSaammppllee  tt-TTeesstt

Student’s t-Test as implemented in Acuity compares the means of genes in two groups
of microarrays. It is testing the null hypothesis:

• The substance is not differentially expressed between two groups of arrays, 
or

• There is no difference in the substance’s mean expression between two 
groups of arrays.

The p-value is the probability that the null hypothesis is true. A low p-value, therefore,
suggests that the substance is differentially expressed.

Student’s t-Test compares the variation between the groups (i.e. the differences in their
means) with the variation within the groups. This means that substances will have
lower p-values if they satisfy two conditions:

• They have different means between the two groups;
• They have similar values within each group. 

On the demo Acuity dataset, for example, when we look at the microarray parameters
tab we notice that the glucose level in the experiment decreases dramatically between
time points 5 and 6. Use the t-test to find the substances that are differentially
expressed between the first five time points, and the last two time points. If we plot
their profiles we get Figure 23.

The 30 substances that score most highly (i.e. that have the lowest p-values) satisfy
the two conditions mentioned above: their means are very different between the two
groups, and within each group their values are very similar.

If we look at the substances that have the lowest p-values between the first four
microarrays and the last three, we get a very different group:
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Note, however, that the substances satisfy the same general requirements: within-
group uniformity, between-group difference. 

Note also that the substances in this second case are expressed at quite low levels:
most of them show less than two-fold change. One of the benefits of t-tests over fold-
change tests, for example, is that they identify substances with small but significant
changes in expression. 

In a time course experiment, therefore, the t-test is useful for finding substances that
are differentially expressed between two different time points, where each time point is
represented by a number of microarrays (replicates). Where you do not have
replicates, as in the examples above, you can find substances that are differentially
expressed between sets of time points. T-tests are not useful for answering the general
question, “In a time course experiment, which substances are differentially
expressed?” as this question does not specify two groups of microarrays.

In an experiment where the microarrays are from two different experimental conditions,
however, the t-test can be extremely useful for identifying substances that are
differentially expressed between the conditions. The two conditions naturally define
two groups of microarrays, and the t-test will identify substances that have similar
expression levels within each group, and different mean levels between the groups. 

6.1.2 Analysis  of  Variance

Analysis of Variance (ANOVA) is a generalization of the two-sample t-Test to many
groups. It is not unusual to have more than two treatments or two types of samples in
a microarray experiment, and in such cases one would use an ANOVA instead of a t-
Test.

66..22 UUssiinngg  PPrriinncciippaall  CCoommppoonneennttss  AAnnaallyyssiiss

As explained in the Clustering topic, Principal Components Analysis (PCA) transforms
a dataset so that substances are scored against ideal profiles that explain the most
variance in the dataset. Substances that score highly on the first few principal
components, therefore, have the following properties:

• They show high correlation with profiles that explain the most variance;
• They show a large change across the dataset.

PCA, therefore, is an excellent way of identifying substances that are changing the
most in a dataset.

You can see the “ideal profiles” graphed in the PCA Properties dialog box (which you
can open by double-clicking on a PCA display). For each component that you select,
the component loadings are drawn (Figure 25).

If you then go to the PCA display and select the 30 substances that score highest on
the X-axis, you will get Figure 26.

As you can see, these substances have profiles that correlate closely with the
component loadings graph of principal component 1. They also have very large fold-
changes: up to 4-fold.

If we choose the substances that score highest on the X-axis in the negative direction,
we get Figure 27.

They are also changing up to 4-fold, but in the other direction.

Clustering methods will identify these groups of substances. For example, if we do 
a 2 × 2 self-organizing map of the dataset, we find Figure 28.

The clusters at the top right and the bottom left correspond to the substances that
score highly on the first principal component (and the other two correspond to the
second principal component). If we did a 5 × 5 SOM, we would see clusters
containing substances corresponding to further principal components.
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What PCA gives us that a clustering method does not is a measure of significance.
The PCA:

• Ranks the components by the amount of variance that they explain, and
• Scores genes according to how well they correlate with the component.

In a self-organizing map, the substances that change most tend to be grouped in
clusters around the outside of the SOM, with the largest changing clusters in the
corners:

However, that still doesn’t tell us which of the corner clusters is most significant, or
how to rank the substances within each cluster. PCA gives us both.

6.3 Match  Expression

So far in this section we have been looking at techniques for mining datasets for
significant substances without using any prior knowledge of what we might be looking
for. However, sometimes we know what we’re looking for: we have applied a known
treatment to our samples, or we are familiar with some of the substances that are
going to be differentially expressed and we want to find others that might be co-
expressed. In such a case, Match Expression can be a useful tool.

Match Expression orders the main data table in Acuity according to how well each
gene correlates with a selected substance (or substances). 

For example, suppose we have two substances that we know are co-expressed, and we
want to find others that have the same profiles as these two. Match Expression is
designed precisely to answer this question. After it orders the substances in the table
by correlation with our two co-expressed genes, we are free to choose our own
correlation cutoff, and select the substances that pass the cutoff, as shown by their
profiles below (where our two initial co-expressed substances are in green):

If we want to see how important these genes are, we can look at where they are plotted
on a PCA display of the dataset:

We see that most of them score highly on components one and two, indicating that
they are explaining a large amount of variance in the experiment.

We can also see substances that are anticorrelated with our co-expressed substances:
as expected, these are also significant in the PCA, and fall upon the opposite vector to
the earlier group of substances.
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A number of the analysis examples used in this application note (Figures 13, 15-20,
22-31) were generated from the data from the first full-scale study to use microarrays,
DeRisi, J., Iyer, V., and Brown, P.O. "Exploring the Metabolic and Genetic Control of
Gene Expression on a Genomic Scale", Science 278 (1997) 680. In that article the
authors investigate the diauxic shift in yeast (the change from anaerobic to aerobic
metabolism) with a view to understanding the genomic basis of this metabolic change. 

DeRisi et al. did not have the sophisticated software that we now have for microarray
analysis, and yet the significant expression changes and profiles that they report in
their Figure 5 are exactly those that we see in the various self-organizing maps
clusters of Figure 29: as time increases along the X-axis, we see groups of genes with
increasing expression, and groups with decreasing expression. Furthermore, the
patterns that they identify as showing the greatest fold changes and hence the greatest
variance are precisely those that are picked out by the principal components analysis,
as shown in our Figures 26, 27 and 30.

The first lesson to take from the comparison of manual methods with algorithmic
techniques is that many of the clustering and other analysis tools that we now have at
our disposal do nothing more than what a biologist with a keen eye can do when
looking at a dataset. The software identifies patterns with very little effort and displays
them in a way that makes them easily interpretable, but it is nevertheless doing what
you could do by eye, given enough time and patience. The benefits of using powerful
software are not to be underestimated, for we can now do in an hour what previously
may have taken a month, and on very large or complex datasets manual methods
become practically impossible. However, it is worth remembering that much of what
the software does is relatively straightforward. By explaining and demystifying analysis
algorithms, we hope to return control of data analysis to the biologist.  

The centerpiece of DeRisi et al is not Figure 5, with its identification of expression
profiles and fold changes, or even the elaborate Figure 3, which shows the metabolic
changes during the diauxic shift in the context of a number of interconnected
metabolic pathways. Rather, it is the intimate understanding of yeast biology that is
evident in every paragraph discussing the significance of the microarray data. 

The second lesson to take, then, is that no matter how much data you gather from a
microarray experiment, no matter how many clusters or other analyses that you
generate with your software, the analyses must be incorporated into an understanding
of the biology of the system that you are studying. Microarrays are very powerful tools,
but they are only tools used to the end of understanding the biology. Microarray
analysis software does not and cannot replace the hard work of integrating your
microarray data with the diverse knowledge of your biological system, and producing a
coherent functional story. 

In this application note we explained the use of some statistical tests by applying them
to DeRisi's diauxic dataset. Figures 23 and 24, for example, show the profiles of genes
that according to a t-Test have highly significant changes between the first five time
points and the last two time points in the diauxic dataset (the two groups
corresponding to the two different metabolic states). In the years since the DeRisi et
al. study was published we have learned a great deal about microarray data analysis,
and in particular we have learned that previously ignored genes with small fold
changes are not necessarily biologically insignificant.

However, the third lesson to take away is the contrary of this, namely that statistical
significance does not imply biological significance. Just as you are not guaranteed of
finding all the biologically significant genes by using a fold-change filter, neither can
you be certain that all the statistically significant genes are biologically significant.
Statistical significance is a rather simple measure; it tells you something about the
consistency and reproducibility of your results, but it says nothing about whether those
results are biologically meaningful. Hidden systematic errors, for example, can still
make a mockery of significance statistics. 

No matter how you decide on a list of interesting genes, your job does not end there.
Data analysis software like Acuity provides a toolbox of statistical and data mining
tools, none of which claims to be exhaustive. Each tool gives you access to a different
part of the dataset. Use all the tools, and you will be better able to construct a
complete picture of your biological system.
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