

CellReporterXpress® Software Guide for reviewing data with the Data Visualization Tools

For research use only. Not for use in diagnostic procedures. © 2012-2018. Trademarks are the property of Molecular Devices, LLC or their respective owners.

Support Resources

- Help button within CellReporterXpress[®] Software
- Support and Knowledge Base: <u>http://mdc.custhelp.com</u>
- Email Technical Support: <u>support@moldev.com</u> (US) <u>techsupport.eu@moldev.com</u> (EU)
- Telephone Technical Support: 800-635-5577 (US) or +44 118 944 8000 (EU), select options for Technical Support → Cellular Imaging Products →ImageXpress Products

Purpose

This document provides a step-by-step review of how to review data with the CellReporterXpress Data Visualization Tools:

- Plate Thumbnail View
- Data View
- Heatmap
- Images
- Scatter Plot
- Stacked Bar
- Data Table
- Cellular Level Data Visualization Tools

Experiment Landing Page

Second system Second system Second system Analyses							?	洸	$^{\circ}$	[->
Experiment Name 🖍 Geometry De 63x 3-color assay 384 (24 × 16) N	escription 💉 VA					Barcode 🖍 N/A		^		
Operations An Operations An Operations An Operations An Operation And O	nnotation Groups	Compounds 3				Barcode 💉 N/A				
Analyses Acquisitions	phalloidin_2							••••		
+ Add Analysis					DATA					
Sep 20, 2018 14:52	INPUTS TIME PO	OINTS LIST	MEASUREMENTS	DESCRIPTION						
Launch Duplicate	Target Nu	clei ensity 80								
phalloidin •••• moldev Mar 16: 2012/09/08	Mi Wi Ma Wi	th 6 x 25								
f(x) phanoidin	Marker									
	Target Ma FITC Sta Ard	rker ined Boti a	h							
	Int Mi Wi Ma	ensity 30 1 3 1th <u>5</u>								

If multiple analyses have been run on a plate, select the analysis that you would like to display, and it will be highlighted (outlined in blue). The selected analysis will be displayed on this landing page as well as throughout the data visualization tools that will be shown in this presentation. The most recently run analysis will appear on the top of this list of analyses.

Experiment Landing Page

② ※ ^ [→

•		т К (6/78/2		1	 	I	í	I	(<u> </u>	i	I	
	с	 C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	
	D	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	
ımbr	nail View	E3	E4	E5	E6	€7 ·	E8	¥Е9	E10 📑	E11	E12	
	F	F3	F4	F5 .	F6	F7	F8	F9.	F10	F11	F12	Easily view trends across your assay with the plate Thumbnail
	G	G3	G4	G5	GØ	67	G8	G9	G10	G11	G12	View . You can double-click on a well to open up the image for that
	н	Нз	H4	• H5	H6	H7	H8	H9	H10	H11	H12	well. We will dive deeper into this in
		13	14	115	16	TIL	18	19	110	111	5112	slide 12, when we show the Images Data Visualization Tool.
	ĩ	J3	J4	J5	J6	J7	8L	J9	J10	J11	J12	
	к	K3	K4	K5	K6	K7	K8	К9	K10	K11	K12	
	L	L3	14	15	L6	L7	L8	L9	L10	L11	L12	
	м	M3	M4	M5	M6	M7	M8	М9	M10	M11	M12	
	N	N3	N4	N5	N6	NZ	N8	N9	N10	N11	N12	

Data View displays data analysis measurements along with a heat map on the wells that were analyzed.

សា	> Experim	ients > 63x	3-color assay	> phalloidin	*									? 米	Å L→
Plate	•	11	[71										Measurements Heatmap	* ဲ
	E			E3 69	E4 34	E5 2	E6 3	E7 4	E8	E9 9	E10 1	E11 1	E12 3	Measurements:	· ()
	F			F3 57	F4 68	F5 8	F6 5	F7 12	F8 10	F9 14	F10 23	F11 21	F12 19	Well Name # Positive Cells	
	G ta View			G3 66	G4 63	G5 19	G6 13	G7 12	G8 28	G9 19	G10 22	G11 33	G12 27		
	н			H3 59	H4 64	H5 29	H6 24	H7 29	H8 23	H9 22	H10 14	H11 28	H12 21		
Summary	'			13 74	14 70	15 57	16 44	17 58	18 45	19 30	110 23	111 24	112 30		
	J			J3 64	J4 85	J5 62	J6 44	J7 63	J8 46	J9 60	J10 31	J11 42	J12 25		
	к			K3 67	K4 86	K5 54	K6 65	K7 65	K8 51	K9 39	K10 68	K11 75	K12 54		
Cellular	L			L3 52	L4 73	L5 65	L6 74	L7 66	L8 53	L9 72	L10 71	L11 77	L12 73		
	м			M3 50	M4 78	M5 72	M6 55	M7 74	M8 59	M9 53	M10 44	M11 70	M12 89		
	N			N3 67	N4 31	N5 60	N6 47	N7 59	N8 59	N9 66	N10 61	N11 58	N12 91		-

Add up to 4 measurements on the **Data View** display

> Experiments > 63x 3-color assay > phalloidin >

The Data View also contains a heatmap

Heatmap any measurement generated from the analysis on the **Data View** display. The heatmap target can be represented in a linear, decimal logarithmic, natural logarithmic, or square root scale.

Plate	•	т1 🕨	T1										Measurements Heatmap *
	E		E3 69	E4 34	E5 2	E6 3	E7 4	E8	E9 9	E10 1	E11 1	E12 3	Heatmap Target: Linear
	F		F3 57	F4 68	F5 8	F6 5	F7 12	F8 10	F9 14	F10 23	F11 21	F12 19	-None- Summary # Cells
	G		G3 66	G4 63	G5 19	G6 13	G7 12	G8 28	G9 19	G10 22	G11 33	G12 27	# Cells # Negative Cells # Positive Cells % Negative Cells
	н		H3 59	H4 64	H5 29	H6 24	H7 29	H8 23	H9 22	H10 14	H11 28	H12 21	% Positive Cells All Cell Average Intensities Positive Cell Average Area
Summary			13 74	14 70	15 57	16 44	17 58	18 45	19 30	110 23	111 24	112 30	Positive Cell Average Intensities Positive Cell Integrated Intensities Positive Cell Total Area
	ſ		J3 64	J4 85	J5 62	J6 44	J7 63	J8 46	90 19	J10 31	J11 42	J12 25	Positive Cell Total Integrated Intensity Positive Cell Total Intensity Annotation
	к		K3 67	K4 86	K5 54	K6 65	K7 65	K8 51	K9 39	K10 68	K11 75	K12 54	Group Sensor DiveleSaturatedDercont
Cellular	L		L3 52	L4 73	L5 65	L6 74	L7 66	L8 53	L9 72	L10 71	L11 77	L12 73	- 7.55098e+8 - 6.13811e+8
	М		M3 50	M4 78	M5 72	M6 55	M7 74	M8 59	M9 53	M10 44	M11 70	M12 89	- 4.72525e+8 - 3.31238e+8
CELL ZOOM	N		N3 67	N4 31	N5 60	N6 47	N7 59	N8 59	N9 66	N10 61	N11 58	N12 91	— 1.89952e+8 — 4.86652e+7 Minimum

→ Experiments > 63x 3-color assay > phalloidin 🗸

Visualize a heatmap for any measurement produced in the data analysis in the traditional Heatmap Data View.

Plate	•	T1	•	•		T1]																				eatmap Target: Linear 🔹	\diamond
∧ ∪														Hea	tmap											١	Positive Cell Total Integrated Intensity 🔻	(\mathbf{i})
X			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	-None-	
		A																									Summary # Cells	
		в																									# Negative Cells	
						C 4																					# Positive Cells	
		с 			03	C4																					% Negative Cells % Positive Cells	
		D			D3	D4																					All Cell Average Intensities	
		_			га	54		Ге	F7		БО	E40	F 14	E40													Positive Cell Average Area	
0.000		-			ES	E4	Eð	EO	E/		Ea	EIU		EIZ													Positive Cell Average Intensities	
		F			F3	F4	F5	F6	F7	F8	F9	F10	F11	F12													Positive Cell Integrated Intensities Positive Cell Total Area	
Summary		6			62	GA	CF.	CR	67	C.	69	C10	G11	612													Positive Cell Total Integrated Intensity	
Summary		6			63	04	05	60	97	00	09	GIU	911	012													Positive Cell Total Intensity	
		н			H3	H4	H5	H6	H7	Н8	H9	H10	H11	H12													Annotation	
.]].																											Concentration	
_					13	14	15	16	17	18	19	110	11	112													Group	
		. 🗖			12	14	16	10	17	10	10	140	144	140													Sensor	
		J			33	J4	10	10	51	JO	19	310	311	J12												┶╴┙┖	PixelsSaturatedPercent	
		к			КЗ	К4	К5	K6	К7	K8	К9	K10	K11	K12													— 8.96385e+8	
Cellular																											— 7.55098e+8	
		L			L3	L4	L5	L6	L/	L8	L9	L10	L11	L12													— 6.13811e+8	
		м			M3	M4	M5	M6	M7	M8	M9	M10	M11	M12													- 4.72525e+8	
		N			N3	N4	N5_	N6	N7	N8	N9	N10	N11	N12													- 3.31238e+8	
		0																										
		Р																								N	— 4.86652e+7 Ainimum	

11

> Experiments > 63x 3-color assay > phalloidin >

業

ဂိ

[→

The heatmap target can be represented in a linear, decimal logarithmic, natural logarithmic, or square root scale.

12

※ ペ

[→

?

13

Export the image currently in view as a raw TIF image by clicking on the **Export Raw Images**

If you acquired a Time Series then you can export MP4 videos for the selected well that is open in this window by clicking on the **Download MP4 Movie** icon.

>>

Å

[→

R

100 µm A1

2

羔

Toggle on and off analysis segmentation masks by clicking on these buttons. To visualize the segmentation masks, zoom in on the image until the masks appear. The red box in the **Navigation Map** indicates where you are looking in the image.

?

洸

 $\overset{\circ}{\sim}$

[→

Compare images from two different wells with the **Comparison Mode** feature.

Link the two images that are being compared so that the zoom and viewing position remains equal between both wells.

Compare analysis masks between different wells in your assay.

ж ^ [→ → Experiments > 63x 3-color assay > phalloidin → ? Ø + - D x + - 3 2 + C3 Ł H8 + Ł 18 0 100 µm A1 14.95 µm 14.95 µm 2 Summary . Cellular H10 🧊 H11 🌌 G12 H9 H6 H7 >>>

18

View your summary (well-by-well) data in a **Scatter Plot**

Configure the X and Y axes with any measurement from you data analysis.

allows you to combine data as an average, count, maximum, minimum, standard deviation, or sum.

 \rightarrow

0

Heatmap a third measurement or an annotation on your **Scatter Plot**. The Heatmap target can be represented in a linear, decimal logarithmic, natural logarithmic, or square root scale.

View your summary (well-by-well) data in a **Stacked Bar**, which can be used to gate populations of cells based on well-by-well

22

Map up to two measurements on the X axis of the **Stacked Bar** graph

23

Heatmap a measurement on the **Stacked Bar** graph

View all of your measurements along with a

Export this table into an Excel (.CSV) file by clicking on this **Export** button

\bigcirc	> Experiments > 63x 3-colo	or assay 🗲 phalloidir	• 💌							⑦ 米	Å [÷
Plate	 ▼ 11 	п									Û
	Well Name	#Cells	# Negative Cells	# Positive Cells	% Negative Cells	% Positive Cells	All Cell Average Intensities	Compound	Concentration	Group () ()	
	N12	91	0		0	100	575.266	Mitomycin C	0.000564503	A	
	M12	89	0		0	100	601.116	Mitomycin C	0.00169351		
H B	К4	86	0		0	100	481.7	Control	0		
	J4	85	0		0	100	434.931	Control	0		
	M4	78	0		0	100	500.232	Control	0		
	L11	Π	0		0	100	530.449	Mitomycin C	0.00508053		G
ummar	К11	75	0		0	100	551.715	Mitomycin C	0.0152416		
	13	74	0		0	100	447.849	Control	0		
<u>†î:</u>	L6	74	0		0	100	495.572	Staurosporine	0.000508053		
	М7	74	0		0	100	496.848	Staurosporine	0.000169351		
	L4	73	0		0	100	531.234	Control	0		
	L12	73	0		0	100	513.161	Mitomycin C	0.00508053		
Cellular ^{Tr}	able M5	72	0		0	100	516.254	Staurosporine	0.000169351		
	L9	72	0		0	100	536.465	Mitomycin C	0.00508053		
	L10	71	0		0	100	535.575	Mitomycin C	0.00508053		
	14	70	0		0	100	420.615	Control	0		
	M11	70	0		0	100	469.217	Mitomycin C	0.00169351		
	E3	69	0		0	100	494.264	Control	0		

[→

<u>D</u>

()

Highlight data points (wells) to gate populations of cells based on well-bywell data. This will open up access to the Cellular Data Visualization Tools.

Open up the Cell Level Density Heatmap to visualize a Scatter Plot of cell-by-cell data. Each data point is an individual cell.

Gate further by highlighting a group of cells.

> Experiments > 63x 3-color assay > phalloidin >

27

You can also gate cells in the **Cell Level Stacked Bar**. Similar to the summary data (well-by-well) **Stacked Bar**, you can map two measurements as well as heatmap a measurement on the graph.

28

Gate cells further with the **Cell Level Scatter Plot.**

Heatmap a third measurement on the **Cell Level Scatter Plot.** Gate cells by drawing a box around a group of cells.

Once you've gated your cells of interest in the previously mentioned Cellular Data Visualization Tools, open up the highresolution images of these cells with the **Cell Level Images** icon. Individual cells will be highlighted with a green box. Look at the data analysis measurements for each highlighted cell by selecting the **Cell Info Mode** icon and clicking on the highlighted cell outlined in green.

Fate	T1	*	×	< 1
in mary		Cell	<u>^</u>	
-		Cell Area	1032.63	
elular	13 361	Nuclear Area	288.073	
		Positive	1	
400		Positive Cells Area	1032.63	
	8.57 µm	Positive Cells Average Intensity	330.183	
		Positive Cells Integrated Intensity	2.82732e+07	
		Wavelength 1 Average Nuclear Inte	631.06	\odot
		Wavelength 1 Integrated Nuclear In	1.50748e+07	
L ZOO M	Contraction of the second s	Wavelength 2 Average Cell Intensity	330.183	100 µm
		Wavelength 2 Average Nuclear Inte	364.357	AT
		Wavelength 2 Integrated Cell Inten	2.82732e+07	
		Wavelength 2 Integrated Nuclear In	8.70376e+06	
		Summary		
		Well Name	13	
		# Cells	74	
_688		# Negative Cells	0	
18		# Positive Cells	74	
		% Negative Cells	0	
		% Positive Cells	100	
		All Cell Average Intensities	447.849	
		Positive Cell Average Area	569.519	
		Positive Cell Average Intensities	447.849	
		Positive Cell Integrated Intensities	2.13008e+07	
		Positive Cell Total Area	42144.4	
		Positive Cell Total Integrated Intens	1.57626e+09	
		Positive Cell Total Intensity	33140.8	-
		227 12 201 12 204	×	<
	H3 301 H3 303 H3 300 H3 309 H3 312 H3 326 H3 333 H3	337 13 361 13 364		
			>	
		المراجع المتقاد		
		•		

Toggle through the images of all the gated cells with the **Image Gallery**. The white images are the image analysis segmentation masks of the cells. Each cell has a unique identifier (well name_number).

View cell-by-cell data in the **Cell Level Table**. Each row in this table is an individual cell. This table is also interactive, where you can heatmap measurements and rank your table based on measurements.

Export this table into an Excel (.CSV) file by clicking on this **Export** button

② ※

ငိ

[→

Т								
	Cell Area	Nuclear Area						
(lt)								
M3			1	519.962	246.865	1.06441e+07	800.284	1.63898e+07
15			1	519.709	342.651	1_47669e+07	612.158	1.29484e+07
13			1	519.311	516.838	2.22566e+07	1162.68	1.57753e+07
M11			1	518.781	554.308	2.38458e+07	1257.33	2.77016e+07
M11			1	518.503	483.96	2.08083e+07	934.402	1.69538e+0
13			1	518.045	462.434	1.98652e+07	1028.28	1.34746e+07
H4			1	517.9	430.059	1.84693e+07	950.128	2.76677e+0
N3			1	517.888	429.269	1.8435e+07	1067.07	1.27366e+0
К7			1	517.768	433.686	1.86203e+07	961.838	1.32195e+0
N12			1	517.683	683.887	2.93579e+07	1341.53	2.64872e+0
N5			1	517.43	471.49	2.02302e+07	818.046	1.44238e+0
L11			1	517.225	531.648	2.28024e+07	866.481	1.59155e+0
К5			1	516.803	266.512	1.14214e+07	706.733	1.4146e+07
К11			1	516.803	647.157	2.77339e+07	812.868	9.83895e+0
N3			1	516.646	370.112	1.58563e+07	718.471	1.28865e+0
J4			1	516.369	355.149	1.52071e+07	1093.89	1.31442e+07
N10			1	516.055	473.68	2.02702e+07	722.19	1.52064e+0
H3			1	515.295	401.544	1.7158e+07	747.411	1.33697e+0
F4			1	515.03	543.67	2.32191e+07	1061.44	2.25366e+0

32

For research use only. Not for use in diagnostic procedures. © 2012-2018. Trademarks are the property of Molecular Devices, LLC or their respective owners.