

Live cell imaging in Target Validation and Lead Optimization

S. Prechtl

AD-HTS / High-Content Analysis

Assays and Cellular Targets (ACT) 2006 October 30 - November 1, 2006 - Green Valley Ranch Resorts - Las Vegas, NV

cell systems in modern drug research

- highly recommended scientific tools
- examination of patho-physiological mechanism
- investigation of compound interactions
- ⇒ within the cellular context

High-Content Analysis

- automated high-resolution imaging & image analysis
 - ⇒ exploits the detailed insight into cell system
- analysis of structural and metabolic changes
 - ⇒ functional high–quality information about targets and potential drug candidates
- quantification of complex drug actions at the level of the individual cell
 - providing statistically significant results of greater reliability

HCA assays are applicable throughout nearly all stages of the drug discovery process

target validation, lead discovery, lead optimization, secondary screening, in vitro toxicology studies, preclinical studies

HCA assays have the potential to accelerate drug discovery process by opening current bottlenecks

- performing higher-throughput cell-based assays providing high-quality data
- time-saving multiplexed / multilinear designed assays
- identifying genes or proteins involved in diseases
- qualifying drugability and therapeutic benefits of selected compounds
- identifying possible side-effects within cellular context

equipment consists of

fully automated confocal HT imaging system, MT epi-fluorescence imager, motorized fluorescence microscope

Hit To Lead

application panel

cell systems

HeLa CHO **DU145** PC3 **LNCap** MCF7 **T47D** BT474 SK-OV-3 **U-2 OS** HUVEC **MVEC** PAEC S49 Jurkat prim. Mo

tube formation

- cellular model to quantify the differentiation of endothelial cells into capillary-like structures -> compounds modulating angiogenesis
- => automated *in vitro* tube formation assay enabling the screening of potential angiogenesis stimulators and inhibitors
- quantification of the extent of tube formation by measuring the total tube length

tube image thresholding analysis image

"best focus" algorithm

tube formation

best focussed image

tube formation

migration

MVEC

DNA content

Target

validation

mitotic index

cell cycle classification

G0/G1 (2N)

Results legend

Late M (2N)

Early M (4N)

cell cycle classification

apoptotic classification

Assay

Development

kinase vs. substrate

kinase vs. substrate

transient transfection of GFP-tagged kinase (WT or D/N) and co-staining of phosphorylated known nuclear substrate

- ► HOECHST dye (A)
 - visualisation of total number of nuclei
- ► GFP expression (B)
 - identification of transfected cells
 - distribution pattern of GFP-kinase
 - B1: WT // B2: D/N
- ▶ phosphorylated kinase substrate (C)
 - identification of substrate that has been phosphorylated at specific phosphorylation site
- ► superimposition (D)
 - documentation of kinase dependent phosphorylation of substrate at specific site: only in WT-GFP positive nuclei

kinase vs. substrate

kinase vs. substrate

- functional HCA assay & biochemical HTRF assay revealed the same rank order for IC₅₀ values of selected compounds
- IC₅₀ values determined by HCA assay differ in 1 order of magnitude
- results from HCA assay contain
 - compound specificity
 - tox & site effects
 - cell permeability
 - MDR effects

⇒results from HCA assay are of greater value

ZK Staurosporine [uM]

2.4 e-9

2000

1.7 e-7

10²

10¹

ZK 335046 [µM]

Target

validation

kinase vs. substrate

phosphorylation of substrate by kinase leads to a specific morphological alteration

- > identification of kinase inhibitors
- > quantification of potency

protein activation often correlates with dislocation from origin to point of interaction

- > phenotypical parameter which can be utilized by HCA
- > identification of inhibitors / inductors

receptor internalization

GPCR activation

Transfluor

Target

validation

- technology which can be used to screen for ligands or drugs regulating GPCR activity
- > GPCR desensitization occurs very early in a common pathway and is coupled with binding to β-arrestin
- > can be monitored by cycling from membrane to cytoplasm and spot formation

Endothelin A receptor internalization (ET_A-R EVOTEC Technologies)

- ➤ after agonistic stimulation, ET_A-R-GFP translocates from membrane to cytoplasm
- > accumulation of ET_A-R-GFP in endosomes can be quantified by HCA
- □ functional receptor internalization assays can be utilized for primary HTS

receptor internalization

OPERA

utilization of dynamic HCA approaches during preclinical drug research

- enlighten complex subcellular processes and pathways
- establish a profound knowledge data base
- improve specificity of compounds, efficiency of drugs and compliance

live-cell assays

- increasingly requested during target validation & lead optimization
- identification of important check points e.g. during cell cycle progression
- improve the understanding of cellular mechanisms
- qualify compound specificity in selected cell systems
- document the uniqueness of drug candidates
- require improved data management, data storage, data handling & automated data analysis solutions

Target

validation

GFP-labeled kinase

intracellular localization during cell cycle progression

Assav

- superimposition (A) of DIC and GFP channel
- intensity profile of GFP fluorescence (B)
- interphase (0 min)
 - predominant nuclear localization
- mitosis
 - localisation in specific subcellular regions
- metaphase (60 min)
 - bipolar localisation
- cytokinesis (125 min)
 - area of the reassembling nuclei and region of the contractile ring

cell cycle kinase

Target

GFP-labeled kinase

- intracellular localization of GFPtagged kinase during metaphase
- chromosomes (A)
 - condensed localisation in equatorial plate
- GFP-tagged kinase (B)
 - intensitiv profile of GFP expression
- \triangleright γ -tubulin (C)
 - bipolar localisation of spindle poles
- superimposition (D)
 - indication of a predominant localisation of GFP-kinase fusion protein around spindle poles during metaphase

Target

validation

siRNA knockdown of a GFP-kinase in CHO cells

in collaboration with Claudia Merz

cell cycle kinase

inhibition of mitotic spindle check point protein leads to G2/M arrest

documented by Nomarski contrast method, 24h monitoring, images taken every 5min

HeLa - ZK D

Target

validation

HeLa - Nocodazole

cell cycle kinase

Target

validation

Discovery 1

stably transfected cells expressing AFP tagged cell compartment or target protein

- ➤ phenotypical characterisation ⇒ improved black box screening
- ➤ functional pathway analysis ⇒ quantification of compound specificity
- ⇒ accounting the dynamic and spatial context

PtK2-PhiYellow-Actin

HeLa-TurboGreen-Mitochondria

3D sectioning

OPERA

confocal imaging enables the dissection of a cell into a stack of discrete planes

- > cells can be analysed in a three-dimensional context
- > 3D sectioning combined with time-lapse generates a powerful novel HCA tool

PtK2-PhiYellow-Actin

40x

supported projects

applications

HT-RNAi project

 phenotypical screening: proliferation, apoptosis, DNA content, mitotic index, cell cycle classification, monopole spindle formation, etc.

Oncology

 siRNA / cDNA transfection: proliferation, apoptosis, cell cycle classification, protein-protein interaction, protein translocation, time lapse studies

supported projects

applications

Gynecology & Andrology

proliferation, migration, primary macrophage classification

Inflammation

proliferation, apoptosis

Oncology

 proliferation, apoptosis, tube formation, mitotic index, DNA content, cell cycle classification, protein-protein interaction, time lapse studies

application panel

cell systems

HeLa CHO **DU145** PC3 LNCap MCF7 T47D BT474 SK-OV-3 U-2 OS HUVEC MVEC PAEC S49 Jurkat prim. МФ

Enabling Technologies / AD-HTS

supported projects

applications

Inflammation

proliferation, apoptosis

Oncology

 proliferation, apoptosis, mitotic index, DNA content, cell cycle classification, protein-protein interaction, time lapse studies

HCA at Schering AG in 2006

- broad panel of HCA applications established that meet CRBA needs
 - statistically secured and relevant data confirmed HCA as a reliable technology
- highly requested technology
- ▶ Target Validation
 - RNAi k.d. & transient transfection studies for all major target families
- ► LD / LO support
 - multiplexed & functional assays established
 target specific mechanistic profiling
- contributions to primary HTS possible
 - target oriented assays, improved black box

